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Material --> raghavian.github.io/talks
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Let’s start with a quiz!

1. Log on to socrative.com
2. Choose “Student Login”
3. Room name: RAGHAV



A Snheak
Peek into ML
for Chemistry

Raghavendra Selvan

Assistant Professor
Dept. of Computer Science
Dept. of Neuroscience
Data Science Lab

raghav@di.ku.dk

raghavian.github.io
;r @raghavian

UNIVERSITY OF COPENHAGEN
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OOOOOOOOOOOOOOOOOOOOOOO

Work in groups for exercise sessions

* ldeally one member can parse Python :)
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Overview of Day 3 & 4

e Session-1: Learning from Data

o |ntroduction (again)

o Basics of ML

o Data preparation (Exercise)
e Session-2: Perceptron Learning Algorithm

o Supervised ML

o Perceptron algorithm

o Predicting structure type from PDF (Exercise)
e Session-3: Multi-Layer Perceptron

o Deep Learning

o Unsupervised Clustering of PDF (Exercise)
e Session-4: Recent trends in Chem+ML
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Yaser S. Abu-Mostafa
Malik Magdon-Ismail
Hsuan-Tien Lin

theratu re LEARNING

FroMm
Pattern Recognition and Machine Learning (link) Dk

Deep Learning, Goodfellow et al.(link)
Learning from Data, Mostafa et al. (link)
Python Data Science Handbook (link)

POnNE

AMLbook.com

O'REILLY

DEEP LEARNING £
lan Goodfellow, Yoshua Bengio,
. and Aaron Courvill

Python -—
Data 801ence
Handbook

ESSENTIAL TOOLS FOR WORKING WITH DATA.

o~ Jake VanderPlas



https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.deeplearningbook.org/
https://work.caltech.edu/telecourse
https://github.com/jakevdp/PythonDataScienceHandbook

NNNNNNNNNNNNNNNNNNNNNNN

Overview

Design-based methods
Learning from data

Underlying data distributions
Perceptron Learning Algorithm
Generalization error
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earning from what type of data?

coder for data impy
network with encoder () and decoder D) (higt
the grey box). The decoder is shared between the data imputation
block and the segmentation network

scientific reports

OPEn Developing and validating
COVID-19 adverse outcome
risk prediction models
from a bi-national European cohort
of 5594 patients

[1] Graph Refinement based Airway Extraction using Mean-Field Networks and Graph Neural Networks (2020),

Extraction of Airways from Volumetric Data (2018) - PhD Thesis
[2] Uncertainty quantification in medical image segmentation with Normalizing Flows (2020)
[3] Lung Segmentation from Chest X-rays using Variational Data Imputation (2020)

(o] Laten repecentaion

Comtional Varasanal AE

[1] Detection of foraging behavior from accelerometer data using U-Net type convolutional networks (2021)
[2] Dynamic 3-VAEs for quantifying biodiversity by clustering optically recorded insect signals (2021)

[3] Segmentation of Roots in Soil with U-Net (2020)

[4] Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models (2020)
[5] Locomotor deficits in ALS mice are paralleled by loss of V1-interneuron-connections onto fast motor neurons (2020)



o, UNIVERSITY OF COPENHAGEN

Design-based methods

Rule-0
Rule-1
Rule-2
y
“Classical” Rule-based Answers S
Models
>

- /
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Design-based methods

-

\_

“Classical” Rule-based
Models

~

Answers

/
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Machine Learning = Learning from Data
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Machine Learning = Learning from Data

Answers

Data

)

-

Y

\_

Machine Learning Models

~

Rules

)
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Machine Learning = Learning from Data

Answers

Data

-

\_

Machine Learning Models

~

Rules

)




', UNIVERSITY OF COPENHAGEN

Machine Learning = Learning from Data

e ML is a lot about discovering patterns
o Big data
o Big computers
o More complex patterns, than before
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Machine Learning = Learning from Data

e ML is a lot about discovering patterns

o Big data

o Big computers

o More complex patterns, than before
e | earning from examples

o Natural to humans

o Temptation to call it Al
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Machine Learning = Learning from Data

e ML is a lot about discovering patterns
o Big data
o Big computers
o More complex patterns, than before
e | earning from examples
o Natural to humans
o Temptation to call it Al
e \What you have is what you get (mostly)
o Large & diverse datasets
o Features and flaws are learned
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Machine Learning Fundamentals

e Basics of Machine learning
e Types of learning
® Principles of Learning
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A learning algorithm

“A computer program is said to learn
from experience E with respect to
some class of tasks T and
performance measure P, if its
performance at tasks in T, as
measured by P, improves with
experience E.”

Mitchell, Tom M. Machine learning (1997)

[

Unknown target function J

f:X-Y

g

Training examples
(dyl), (x2,y2)...(<N.yN)

—

[ Hypothesis Set ]

Learning
Algorithm

Unknown Input
Distribution

P(X)

Final Hypothesis
h
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The Task, T

Classification
Regression
Transcription
Machine translation
Face recognition
Anomaly detection
Synthesis & sampling
Denoising

Density estimation
Self-driving

redgred med flede

& DANISH ENGLISH SPANISH
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The Performance measure, P

Not always straightforward but
most common:;

Accuracy

Error rates/ losses (0-1 loss)
Log probability

KL divergence

https://thispersondoesnotexist.com/

http://www.thisworddoesnotexist.com/



https://thispersondoesnotexist.com/
http://www.thisworddoesnotexist.com/
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The Experience, E

All the ways information can enter the model
primarily as:

e Prior information
Hyper-parameters
e Data/ supervision

More concrete classification of ML methods is
based on E
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Supervised Learning

Strong labels for the entire dataset
(Relatively) Easy to train

Hard to obtain high quality labels
Ex: Image Segmentation

O O O O
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Unsupervised learning

B
o No labels.
. . —
o “Figure it out yourself” model o Y
o Ex: Social networks, Gene %
expression networks i ofg
3
Q.
o &
[ o
g
3 FCC
HCP
BCC
SC
Decahedron
Icosahedron
Octahedron

Latent Space Feature O
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Semi-supervised learning

o Strong labels for some of the data

Weak labels for all of the data

o Can be useful in cases where
strong labels are hard!

o Ex: Captcha

©)

e Aphididae spp. + Bombus spp. Lucilia spp. = Staphylinidae spp.

4 -
2_
2_
O-
0_
_2-
-2 J
5 .o
_4- T T T T T T T I’ T
0 5 -4 -2 0 2 -2 0 2

(a) PCA (b) Unsupervised model (¢) Semi-supervised model
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Reinforcement learning

o Combination of strong and weak
labels
©  Online learning

H Every protein is made up These amino acids interact These shapes fold up on Proteins can interact with
O CO nstant Iearn I n g of a sequence of amino locally to form shapes like larger scales to form the other proteins, performing
acids bonded together helices and sheets full three-dimensional functions such as signalling

O EX: Stream | ng Se Nlces protein structure and transcribing DNA
recommendation

Alpha Pleated Pleated Alpha
helix sheet sheet helix

Figure I: Complex 3D shapes emerge from a string of amino acids.

https://deepmind.com/blog/article/AlphaFold-Using-Al-for-scientific-discovery



https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
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More....

O O O O O

Self-supervised
Active learning
Continual learning
Meta-learning
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More....

Self-supervised
Active learning
Continual learning
Meta-learning

O O O O O

We will focus on supervised and unsupervised learning methods.
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Formulate your learning task

O TaskT
o Performance P
o Experience E

We will discuss this in the exercise session.
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Principles of Learning
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Four horsemen of ML failure

Data assumptions
Data snooping
Underfitting
Overfitting

W e

+|/ Yol S,haI’I'NQt L‘e'arn! =
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Data assumptions

1. i.i.d
o ldentical: Data is drawn from the same data distribution
o Independent: Data points independent from each other
2. Sampling/Selection bias

e |f ii.d assumption is violated does learning work?
e How can we overcome?
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Data Snooping

e Test data has informed the model selection
e (Generalization suffers

“If you want an unbiased assessment of your learning performance, you
should keep a test set in a vault and never use it for learning in any way”
Mostafa et al. Learning from data (book)
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Underfitting & Overfitting

tropical tropical
3009 @ False 004 @ False
& True & True
250 4 250 4
a a
g 200 4 g 200 4 .
a a
) ) -
E 150 4 E 150 4 i e
< 100 ] < 100 ] o 0t e
sy * .
.$.. a-.
- . 5
0] % e ol 2gy 2 WM LN
. » . -, .
0 0 ate ¥ ¥
T T T T T T T T T T T
=10 =5 10 20 25 -10 =5 0 5 10 20 25

Annual_temp

Annual_temp

Annual_precip

tropical
3009 @ False
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250 4
200 4
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100 4
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ﬂ 4
10 -5

Annual_temp
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Underfitting & Overfitting

tropical tropical " tropical
041 @ False 3041 @ False s 041 @ False
@ True & True ety & True
250 4 250 4 250 4
& &
200 4 w200 4 w200 4
.o g £
150 - = o = 150 = 150
& o g g
. %
100 4 - » .!.l' Emg. El(l{l-
b g
. e & =
L] . 5
50{ * e 2. WO 50{ * e 50{ * e
L] L :
04 04 04
T T T T T T T T T T T T T T T T T T
=10 -5 ] 5 10 15 20 25 30 =10 -5 ] 5 10 15 20 25 30 =10 -5
Annual_temp Annual_temp Annual_temp

Underfitting Appropriate capacity Overfitting
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Underfitting & Overfitting

e Models are chosen based on training error
e Test error = Training error

tropical o tropical o
1 ® False . 001 e False s X
- -
& True o & True o
e 500, Boe
) o
gl =3 gl
.. o200 1 s,
. L] "j‘: i E‘, " - '._;.: i
£ N v o = 150 . v o
« g ® o e E - 9 . T
. ¥ . ¥
- .* :.! s % i'- s 100 4 - . . T .e o L) I:'-
o£o.: l.. ". '!.. - E, & o£o.. n.. "- L ¥, &
. anie - anin
. :- 'l'; Ft. . ':. s . 504 * e :. :'} L '.. .
. g o] o* e " . . g v o -
S " 'q}.a o ..': 04 R 'q?.a e g
T T T T T T
-10 -5 ] 5 10 15 20 25 -10 -5 ] 5 10 15 20 25

Annual_temp

Underfitting

Annual_temp

Appropriate capacity

Annual_precip
f Pl P
g 8 B 8 ¥ 8

=
s

tropical
1 @ False
& True
L]
e
T T T T T
=10 -5 0 5 10 15 20 25

Annual_temp

Overfitting
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Handling overfitting

e Representational capacity
© Occam'’s Razor: “The simplest model that fits the data is also the most plausible.”

— - Training error
Underfitting zone | Overfitting zone

—— (Generalization error

Error

f e e e e e e e e

0 Optimal Capacity
Capacity
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Summary of Learning Principles

Data is not ideal

Lock away test data

Low generalization error is the Holy Grail of all ML

Model capacity is hard to decide, even with Occam’s Razor
Underfitting & Overfitting can hamper performance
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Model Selection & Validation

e How to avoid Overfitting
e How to pick models based

— - Training error

Underfitting zone | Overfitting zone .-
—— Generalization error

on training error

Error

-~
-

\ /
\L I Generalization gap

i I

0 Optimal Capacity
Capacity
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Validation Set comes to the rescue
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Validation Set comes to the rescue

Training data for training

Validation data for model selection
Hyper-parameters can be selected with it
Rule of thumb: 60-20-20

Consequences:

Reduction in training data
Computational overhead

0.6

0.5

0.4

0.3 1

0.2 1

0.14

0.0

0 1000 2000 3000 4000 5000

Training
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Cross-validation gives more training data

All the data
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Cross-validation gives more training data

[
All the data -
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Cross-validation gives more training data

All the data
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Summary

Models selection is not straightforward

Pick a class of models -> Tune hyper-parameters
Training data to select models

Generalization suffers if only based on training data
Use part of training data for validation

Cross validation to the rescue (?)
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Exercise on Data Preparation
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Session 2
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A first ML algorithm.....
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Linear Separability
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tropical &
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https://datacatalog.worldbank.org/dataset/climate-change-knowledge-portal-historical-data
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Linear Classification

350
tropical
. L. . @& False - .Il
e Given a training set, with 001 o True °* o
binary labels - oo
e Model a linear classifier : e
based on the training data S 200 g
e Predict classification on new ey i .o °% e
g 150 [
data g & . .,-(! .,
100 & ®.% o0 % ° o
'“‘I‘. . e o ®
0 ote ® o
5 0 5 10 15 20 5 e
Annual_temp

https://datacatalog.worldbank.org/dataset/climate-change-knowledge-portal-historical-data
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Linear Separability

If the d-dimensional data is
linearly separable, then there
exists at least one (d-1)
dimensional hyperplane that is a
classifier.

350

Annual_precip

Annual_temp

https://datacatalog.worldbank.org/dataset/climate-change-knowledge-portal-historical-data


https://datacatalog.worldbank.org/dataset/climate-change-knowledge-portal-historical-data
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Linear Separability

If the d-dimensional data is
linearly separable, then there
exists at least one (d-1)
dimensional hyperplane that is a
classifier.

Mathematically, the hyperplane (in
this case) a line is given as:

wo + wir] + wary =0
Or in vector form,

wlx=(

350

Annual_precip

Annual_temp

https://datacatalog.worldbank.org/dataset/climate-change-knowledge-portal-historical-data


https://datacatalog.worldbank.org/dataset/climate-change-knowledge-portal-historical-data
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A first ML Algorithm

Given the training data,

T
X ={xi} :xj = |20, ..., 3

Y = {vi} yi € {+1, -1}

Annual_precip

Annual_temp
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A first ML Algorithm

Given the training data,

T
X ={xi} :xj = |20, ..., 3

Y = {vi} yi € {+1, -1}

The model should be of the
form:

41 ifwlx >0
1 ifwlx <0

Annual_precip

Annual_temp
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A first ML Algorithm

Given the training data,

T
X ={xi} :xj = |20, ..., 3

Y = {vi} yi € {+1, -1}

The model should be of the
form:

1 ifwlx >
h(x) — + fwix >0

1 ifwlx <0

Or, more compactly:

h(x) = sign (WTX)

Annual_precip

100 4

Annual_temp
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A first ML Algorithm

Given the training data,

T
X ={xi} :x; = [z0,..., 7]

Y = {yi} 1yi € {+1, -1}

The model should be of the
form:

1 ifwlx>0
h(x) - + fwix >

1 ifwlx <0

Or, more compactly:

h(x) = sign (WTX)

Input

Weights

Activation

Output
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Perceptron Learning Algorithm

Input  Weights Activation Output
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Perceptron Learning Algorithm

Axon
terminals

Myelin sheath /\

Dendrites

Cell nucleus

Schematic of a biological neuron.

https://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Activation

Weights

y =+1/-1

Output


https://sebastianraschka.com/Articles/2015_singlelayer_neurons.html
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Perceptron Learning Algorithm

Algorithm: Perceptron Learning Algorithm

P « inputs with label 1:

N + inputs with label O:

Initialize w randomly;

while !convergence do

Pick random x € PU N ;

if xe P and w.x <0 then
| W=W+4X;

end

ifxe N and w.x> 0 then
| W=—W—X;

end

end

//the algorithm converges when all the
inputs are classified correctly
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Perceptron Learning Algorithm

t+ 1) = L t)x(t).
Algorithm: Perceptron Learning Algorithm W( T ) W( )+ y( )X( )

P « inputs with label 1:

N «— inputs with label 0
Initialize w randomly;
while !convergence do X

Pick random x € PU N ; * o
if xe P and w.x <0 then o
| W =W+ X
end o
ifxe N and w.x> 0 then
| W =W —X; x 0
end
end |§|
//the algorithm converges when all the %

inputs are classified correctly

PLA Task in Notebook
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Summary

e Can learn from datal!
e Overcomes tedious model designs
e Perceptrons mimic biological neurons



-, UNIVERSITY OF COPENHAGEN

Summary

e Can learn from datal!
e Overcomes tedious model designs
e Perceptrons mimic biological neurons
However,
e Depends on the data
o Strong assumptions (iid)
o Distribution (no shift)
o Number of samples
o High quality labels
e Many (equally better/worse) models to choose from
e Hard to generalize
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Exercise on Perceptron
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Recipe for rest of the exercises

0. Create training 1. Instantiate the 2. Fit the model 3. Predict using
& test sets model to training set trained model
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Perceptron Learning Algorithm

Given the training data,

X = {x;}:x; = [x(_],...,:t:d}T
Y = {yi} 1 yi € {+1, -1}

The model should be of the
form:

1 ifwlx>0
h(X){+ HTw'x >L(

1 ifwlx <0

Or, more compactly: Input  Weights Activation Output

h(x) = sign (WTX)
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PLA to Linear regression
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Linear Regression

Then, we are interested in a function
h(-) : X =Y

§ 2 h(x) = wlx
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Linear Regression

X c RfVXd
Y c RI\'TXI
Then, we are interested in a function y
LY,Y)
h(-) : X =Y
§ 2 h(x) = wlx
Input  Weights Activation Output

Analytical solution obtained by minimizing mean squared error loss £(Y, Y)

w = (X'X)"'X'Y
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PLA to Logistic regression
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Sigmoid function

o(-):zeR— (0,1)

1
(14 exp™7)

o(x) =

=

o
(O]
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Logistic Regression

X e RV*
Y c (0,1)V 1
Then. we are interested in a function

h(-) : X =Y

§ = h(x) =o(w' x)
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Logistic Regression

X_ c RNxd
Y c (0; 1)1?\'T><1
Then. we are interested in a function

h(-) : X =Y

§ = h(x) =o(w' x)

Input

Weights

Activation

y

LY.)Y)

Output
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Gradient based update for Logistic Regression
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Desired forms of loss functions

e Smooth iy
e (Convex i
e Analytical gradients -
e |f not convex, with feasible

set of local minima
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Gradient descent
Xt+1 = Xt — YAf(x¢)

200 -
175
150
125

& 100 -
075
050 -
0.25
0.00 -

20 -15 -10 -05 00 05 10 15 20
X
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Summary

e Perceptron with “multiply by 1” activation -> Linear
Regression

e Perceptron with “sigmoid” activation -> Logistic Regression

e Analytical solutions seldom exist

e Gradient descent can be used when gradients can be
computed

e \What if analytical gradients cannot be computed?



OOOOOOOOOOOOOOOOOOOOOOO

Home Exercise on Gradient Descent
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Session 3
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DL: Massively parameterised function approximator
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DL: Massively parameterised function approximator

X ¢ RV*P
Y € RVXP RY (0, )Y
fGW): X =Y

where, the number of parameters are approximately:

IW| > O(N x D)
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DL: Massively parameterised function approximator

X ¢ RV*D, e X:Images, videos, time
Y € RVXD RV (0, 1)V series, tabular, text, density
FEW) X Y functions, graphs, etc...
e Y: Segmentations,
where, the number of parameters are approximately: alignments, regression,
W[ > O(N x D) translation, classification,

synthesis
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Good old PLA again!

y
—
A
X4 w,
Input Weights Activation Output

Annual_temp

Perceptron Learning Algorithm
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Good old PLA again!

W) X =Y

y
e How many parameters?
e How do we obtain W*?
i . e What are the challenges?
Input  Weights Activation Output

Perceptron Learning Algorithm
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Good old PLA again!

200

175 1

y 150 -
125 -
x 100

075 1

0.50 4
0.25
Input  Weights Activation Output 000

20 -5 -0 -05 00 05 10 15 20
X

Perceptron Learning Algorithm Xt4+1 = Xt — ")/Af(}(t)
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Gradient based optimization for different scenarios

Solve for the

analytical
model

Linear Regression
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Gradient based optimization for different scenarios

Solve for the Analytical gradients

for iterative gradient
descent

analytical
model

Linear Regression Logistic Regression
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Gradient based optimization for different scenarios

Solve for the Analytical gradients

for iterative gradient
descent

Automatic
Differentiation

analytical
model

Linear Regression Logistic Regression Almost everything else.
Including DL
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Increasing tunable parameters gives more flexibility

) fW): X =Y
X
: 200
X
' — —> —> —> 175 -
—> —> —> —>
—> —> —> —> 150 4
—> —> —> —> y
—> —> —> —>
125 -
& 100
X, 075
_ 0501
025 -
Input Weights Output 000 ;

20 -5 -0 -05 00 05 10 15 20
X

Deep Learning Models
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Increasing tunable parameters gives more flexibility

) fW): X =Y
X0
Xl
—> —> —> —>
—> —> —> —>
—> —> —> —>
—> —> —> —> y
—> —> —> —>
Xd
Input Weights Output

Deep Learning Models
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Increasing tunable parameters gives more flexibility, but...

) W) X =Y
XO
Xl
—> —> —> —>
—> —> —> —>
—> —> —> —>
—> —> —> —> y
—> —> —> —>
Xd
—
Input Weights Output

Deep Learning Models
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Automatic differentiation to navigate such loss-scapes

B fLiW): X =Y y = flg(h(x))) = flg(w1)) = f(w2)
XO
* I N Then, using chain rule
= =2 3|2
= = 3|3 y dy _ dy dwsdwq
dxr  dwodwy dx
X, h() —----—m-----oo - 9()
Input Weights Output

Deep Learning Models
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Automatic differentiation to navigate such loss-scapes

fW): X =Y

X0

Xl
—> —> —>
—> —> —>
—> —> —>
—> —> —>
—> —> —>

X4 h() ———-————mmmmmm -

Input Weights

Deep Learning Models

vy

Output

y = flg(h(z))) = fg(w1)) = f(w2)
Then. using chain rule

dy dy dwodwq

dr  dwydwy dz

AD in ML is Backpropagation!
1. Forward accumulation (wrt input)
2. Reverse accumulation (wrt loss)
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Automatic differentiation to navigate such loss-scapes

B fLW) X =Y y = flg(h(z))) = fg(w1)) = f(w2)
XO
%1 Then. using chain rule
—> —> —> —>
=IREIREIRE: y
— | (= || | dy - dy dwodwq
dr  dwodw; dx
Xg h() ------------o-- a()
AD in ML is Backpropagation!
Input Weights Output 1. Forward accumulation (wrt input)

2. Reverse accumulation (wrt loss)

Deep Learning Models

And, don’t worry. It is by now efficiently implemented in several packages!
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First DL model: Multi Layer Perceptron (MLP)
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First DL model: Multi Layer Perceptron (MLP)

FCC/
: SE..Y

Weights Hidden Layer ]
W, with non-linear Weights

Activation 1

Input

Output
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MLP with multiple outputs

> o() y0
L(Y.)Y)
> o() yl
BP
> o() y2
Weights Hidden Layer i
Input W, with non-linear Weights Output

Activation W1
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Multi Layered Perceptron with multiple outputs

Weights Hidden Layer
W with non-linear
° Activation 1 Activation W,

Hidden Layer

Input with non-linear

Weights Weights

Output
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MLPs everywhere!

Highly flexible components

Can approximate highly non-linear functions
Classification/Regression/Segmentation
Non-linearities are critical

“Small’ compared to other DL models
Deeper or Wider?

No obvious way to decide architectures
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Summary

Design based methods

Learning from data is possible*

Some form of experience must be given to the ML models
Perceptron as the fundamental unit

MLPs already can approximate complex functions
Automatic differentiation is handy!

CNNs can learn complex filters

CNNs can harvest information from different scales
Occam’s Razor
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Exercise on MLPs
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