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Overview

1 Videos as Numerical Arrays

2 Biomedical Image Analysis

3 Model-based methods

4 Deep learning based methods
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Biomedical Images & Videos are discretized numerical
arrays with physical properties for intensities

• Microscopy images, Magnetic resonance imaging (MRI), optical videos

• Specialized data containers for storing and processing: DICOM, NIFTI, TIFF

• 2D/3D/4D images with more than one channel

• Videos are stacks of images along time-axis
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Storing Intensity information in regular arrays
• Grayscale images are stored in single channel 2D arrays

• Intensity values are stored as integers or floats

• Ex: An 8-bit integer can have 2**8=256 levels
0 → black and 255 → white, and other shades of gray

• Color images in multi-channel (3 or 4)

• RGB is a common way of storing images

• Multi-stack images
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Notations

Observed data X = {x1, x2, . . . , xN} : xi ∈ RC×H×W×D

Labels / Targets Y = {y1, y2, . . . , yN} : yi ∈ RM×H×W×D

Decision functions/ Models fθ(·) : X 7→ Y
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Videos as sequence of images

Easiest approach for Video Analysis is to perform
frame-by-frame image analysis
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Computational methods can reduce the labour intensive
processes of Image Analysis

• Expert annotators are expensive to perform mundane tasks

• Tasks like delineation are tedious and cumbersome [1]

• Variability across/within annotators

• Large volumes of high dimensional data

• Discover novel metrics from large volumes

RootPainter3D: Interactive-machine-learning enables rapid and accurate contouring for radiotherapy. AG Smith et al. 2021
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Tasks in Biomedical Image Analysis

Depending on the nature of the input-output relations
several downstream tasks can be formulated
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Image Classification

• f (·) : X ∈ RC×H×W×D 7→ Y ∈ {0, 1}M

• Image level targets

• Detection of behaviour episodes

• Quality Control for denoising

• Probabilistic predictions that can be
thresholded

• Takes entire input image into
consideration
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Image Regression

• f (·) : X ∈ RC×H×W×D 7→ Y ∈ R
• Image level scores

• Grades of measurements

• Counting number of cells

• Anatomical measurements

• Harder than classification in most cases
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Image Segmentation

• f (·) : X ∈ RC×H×W×D 7→ Y ∈
{0, 1}M×H×W×D

• Pixel level predictions

• Foreground & backgroud delineations

• Useful for localizing decisions
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Image Registration

• f (·) : xi , xj ∈ RC×H×W×D 7→ Y

• Aligning images over different time
points or to a reference atlas

• Predictions are Transformation
matrices or Deformation fields

• Useful for quantifying temporal
progression or colocalisation
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Image understanding & Generative modeling
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DeepLabCut Exercise: Part-1

We need to let the
machine learn!

1 Install Anaconda

2 Create new virtual environment
conda create -n DLC python=3.7

3 Install wxpython
conda install -c conda-forge wxpython=4.0.7

4 Install DeepLabCut
pip install “deeplabcut[gui]”
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Machine Learning Fundamentals
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Model-based methods are based on hand-crafted rules
Consider the example of segmenting lungs from chest X-ray images.

Can we come up with the simplest decision based segmentation model?
• Hint: Preprocessed. Intensity range is 0 (black) - 255 (white)

• Intensity thresholding. Y = I[Imin ≤ X ≤ Imax ]

• Other standard (powerful) segmentation methods ([2], [3])

[2] Seeded region growing. R. Adams, L. Bischof. 1994

[3] Watershed of a continuous function. L. Najman and M. Schmitt. (1994)
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Bias-variance trade-off

Encoding strong prior → Low Variance, High Bias

Figure from I. Goodfellow et al., Deep Learning. 2017
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Rich classes of model-based methods are based on custom
filters

Source [4]

• Hand-crafting features is same as designing filters

• Are high bias models

• Example: The Laplacian image pyramid

• Scale-space theory [5]

+ Incorporates prior knowledge

+ Robust and efficient methods

+ Few parameters to tune

- Cumbersome to tune parameters

- Transfering domain knowledge can be challenging

[4] https://en.wikipedia.org/wiki/Pyramid_(image_processing)

[5] T. Lindeberg, Scale-space theory: A basic tool for analyzing structures at different scales. (1994)
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Machine Learning* is the process of Learning from Data

Based on Fig. 1.9, from Mostafa et al.

• Hand-crafting gives way to learning
from data

• Approximating the underlying data
distribution from observed data

• Over-parameterised function
approximators

• Parameters learned using automatic
differentiation

+/- No domain knowledge required

+ Can learn efficiently from labelled
datasets

- Features and flaws are learned

- Curating data is highly important

*We basically only focus on Supervised Deep Learning which is a small subset of all of ML!
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Bias-variance trade-off

Learning from data → Low Bias, High Variance

Figure from I. Goodfellow et al., Deep Learning. 2017
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One Slide Introduction to Deep Learning

• Over-parameterised function
approximator

• Can have thousands of millions of
parameters

• Optimising these parameters is difficult

• Magic sauce of DL is Automatic
Differentiation

• Implemented in several powerful
frameworks (Pytorch, Tensorflow)

• Scalable training on GPUs
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A Quick Peek into Convolutional neural networks (CNNs)
• Learnable convolution kernels
• Technically, not convolution but cross-correlation
• Implemented as matrix multiplications
• Kernel flipping can be overcome during learning
• Known to learn general image descriptors
• And also, specialized task-specific kernels

Figure reproduced from Le Cun et al. Deep Learning. 2015
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The Convolution Operation in CNNs

Adapted from https://cs231n.github.io/convolutional-networks
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More formally, CNNs exploit some key properties when
operating on images

Success of CNNs in computer vision is due to several properties.

Consider a translation operation T (x) = (x − v)

• Translation invariance: y = f (T (x)) = f (x), or

• Translation equivariance: y = f (T (x)) = T (f (x))

• Scale separation: Long range dependencies from multi-scale interaction terms

• Compositionality: y = f1 ◦ f2 ◦ · · · fL(x)
where fi (·) are comprised of convolution kernels, non-linearities and sometimes
pooling operations.
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Fully Convolutional Neural Network (FCNN) for Image
outputs

Source: https://arxiv.org/abs/1411.4038
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Closer look at the U-net (aka work-horse CNN model for
image segmentation)

• Supervised segmentation model

• Encoder-decoder type neural network

• Encoder and Decoder are comprised of several layers of CNNs

• Encoder and decoder paths communicate via skip connections

Ronneberger O. et al. U-net for biomedical image segmentaion. 2015
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U-net architecture

Source Ronneberger et al. 2015

Laplacian pyramids?
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Summary

• Image analysis is a challenging sub-domain of Computer Vision

• Downstream tasks can be of huge consequence

• Automating IA can be beneficial to practitioners

• Opens up novel paradigms of handling large volumes of dat

• Model based methods can be powerful; they encode strong prior

• Trade-off between optimization and learning

• ML models are high variance and learned from data

• Data preparation is the most important step!

• CNNs are indispensable when working with images.

• U-net like models use CNNs in a hierarchical manner for segmentation

• Image analysis is a starting point for video analysis
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Resources

https://github.com/DeepLabCut/DeepLabCut

https://github.com/DeepLabCut/DLCutils

https://www.fast.ai/
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