

Behavioural Analysis with Big Data & Deep Learning PhD Course on animal models of disease and behavioral analysis

Raghavendra Selvan

Assistant Professor

Dept. of Computer Science (ML Section)

Dept. of Neuroscience (Kiehn Lab)

Data Science Lab

University of Copenhagen

Pioneer Centre for Artificial Intelligence, Denmark

raghav@di.ku.dk

***Topological representation of the state of the sta

Materials

https://raghavian.github.io/outreach/

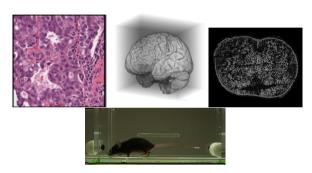
Overview

- Videos as Numerical Arrays
- Biomedical Image Analysis
- Model-based methods
- Deep learning based methods

Overview

- Videos as Numerical Arrays
- Biomedical Image Analysis
- Model-based methods
- Deep learning based methods

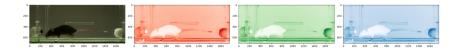
Biomedical Images & Videos are discretized numerical arrays with physical properties for intensities



- Microscopy images, Magnetic resonance imaging (MRI), optical videos
- Specialized data containers for storing and processing: DICOM, NIFTI, TIFF
- 2D/3D/4D images with more than one channel
- Videos are stacks of images along time-axis

Storing Intensity information in regular arrays

- Grayscale images are stored in single channel 2D arrays
- Intensity values are stored as integers or floats
- Ex: An 8-bit integer can have $2^{**}8=256$ levels $0 \rightarrow$ black and $255 \rightarrow$ white, and other shades of gray
- Color images in multi-channel (3 or 4)
- RGB is a common way of storing images
- Multi-stack images



Overview

- Videos as Numerical Arrays
- Biomedical Image Analysis
- Model-based methods
- Deep learning based methods

Notations

Observed data
$$\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\} : \mathbf{x}_i \in \mathbb{R}^{C \times H \times W \times D}$$

 $\mathsf{Labels} \; / \; \mathsf{Targets} \quad \mathbf{Y} = \{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N\} : \mathbf{y}_i \in \mathbb{R}^{M \times H \times W \times D}$

Decision functions/ Models $f_{\theta}(\cdot) : \mathbf{X} \mapsto \mathbf{Y}$

$$\cdot): \mathbf{X} \mapsto \mathbf{Y}$$

Videos as sequence of images

Easiest approach for Video Analysis is to perform frame-by-frame image analysis

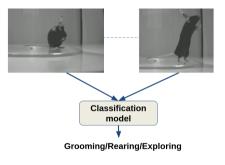
Computational methods can reduce the labour intensive processes of Image Analysis

- Expert annotators are expensive to perform mundane tasks
- Tasks like delineation are tedious and cumbersome [1]
- Variability across/within annotators
- Large volumes of high dimensional data
- Discover novel metrics from large volumes

Tasks in Biomedical Image Analysis

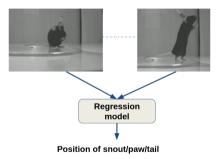
Depending on the nature of the input-output relations several downstream tasks can be formulated

Image Classification



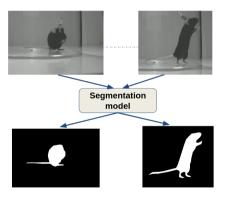
- $f(\cdot): \mathbf{X} \in \mathbb{R}^{C \times H \times W \times D} \mapsto \mathbf{Y} \in \{0, 1\}^M$
- Image level targets
- Detection of behaviour episodes
- Quality Control for denoising
- Probabilistic predictions that can be thresholded
- Takes entire input image into consideration

Image Regression



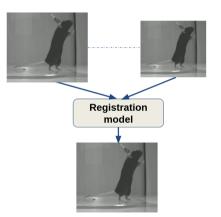
- $f(\cdot): \mathbf{X} \in \mathbb{R}^{C \times H \times W \times D} \mapsto \mathbf{Y} \in \mathbb{R}$
- Image level scores
- Grades of measurements
- Counting number of cells
- Anatomical measurements
- Harder than classification in most cases

Image Segmentation



- $f(\cdot): \mathbf{X} \in \mathbb{R}^{C \times H \times W \times D} \mapsto \mathbf{Y} \in \{0,1\}^{M \times H \times W \times D}$
- Pixel level predictions
- Foreground & backgroud delineations
- Useful for localizing decisions

Image Registration



- $f(\cdot): \mathbf{x}_i, \mathbf{x}_j \in \mathbb{R}^{C \times H \times W \times D} \mapsto \mathbf{Y}$
- Aligning images over different time points or to a reference atlas
- Predictions are Transformation matrices or Deformation fields
- Useful for quantifying temporal progression or colocalisation

Image understanding & Generative modeling

DeepLabCut Exercise: Part-1

We need to let the machine learn!

- Install Anaconda
- ② Create new virtual environment conda create -n DLC python=3.7
- **1** Install wxpython conda install -c conda-forge wxpython=4.0.7
- Install DeepLabCut pip install "deeplabcut[gui]"

Machine Learning Fundamentals

Overview

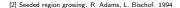
- Videos as Numerical Arrays
- Biomedical Image Analysis
- Model-based methods
- Deep learning based methods

Model-based methods are based on hand-crafted rules

Consider the example of segmenting lungs from chest X-ray images.

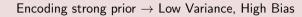
Can we come up with the simplest decision based segmentation model?

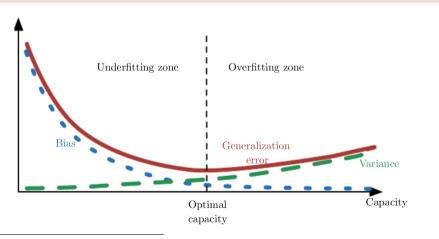
- **Hint**: Preprocessed. Intensity range is 0 (black) 255 (white)
- Intensity thresholding. $\mathbf{Y} = \mathbb{I}[I_{min} \leq \mathbf{X} \leq I_{max}]$
- Other standard (powerful) segmentation methods ([2], [3])



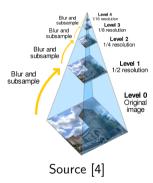
^[3] Watershed of a continuous function. L. Najman and M. Schmitt. (1994)

Bias-variance trade-off





Rich classes of model-based methods are based on custom filters



- Hand-crafting features is same as designing filters
- Are high bias models
- Example: The Laplacian image pyramid
- Scale-space theory [5]
- + Incorporates prior knowledge
- + Robust and efficient methods
- + Few parameters to tune
- Cumbersome to tune parameters
- Transfering domain knowledge can be challenging

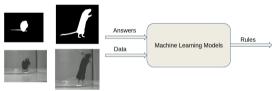
^[4] https://en.wikipedia.org/wiki/Pyramid_(image_processing)

^[5] T. Lindeberg, Scale-space theory: A basic tool for analyzing structures at different scales. (1994)

Overview

- Videos as Numerical Arrays
- Biomedical Image Analysis
- Model-based methods
- Deep learning based methods

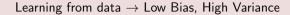
Machine Learning* is the process of Learning from Data

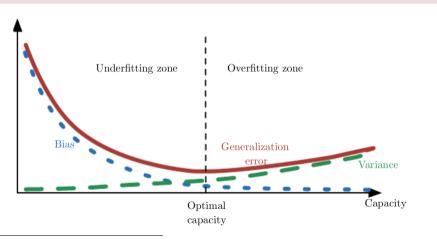


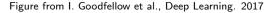
Based on Fig. 1.9, from Mostafa et al.

- Hand-crafting gives way to learning from data
- Approximating the underlying data distribution from observed data
- Over-parameterised function approximators
- Parameters learned using automatic differentiation
- +/- No domain knowledge required
 - + Can learn efficiently from labelled datasets
 - Features and flaws are learned
 - Curating data is highly important

Bias-variance trade-off

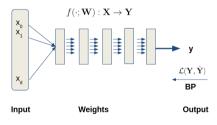






One Slide Introduction to Deep Learning

- Over-parameterised function approximator
- Can have thousands of millions of parameters
- Optimising these parameters is difficult
- Magic sauce of DL is Automatic Differentiation
- Implemented in several powerful frameworks (Pytorch, Tensorflow)
- Scalable training on GPUs



A Quick Peek into Convolutional neural networks (CNNs)

- Learnable convolution kernels
- Technically, not convolution but cross-correlation
- Implemented as matrix multiplications
- Kernel flipping can be overcome during learning
- Known to learn general image descriptors
- And also, specialized task-specific kernels

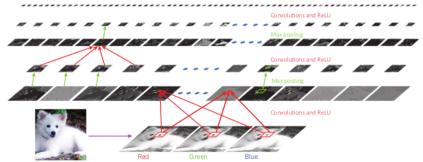
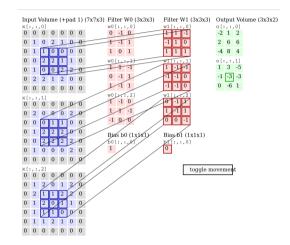
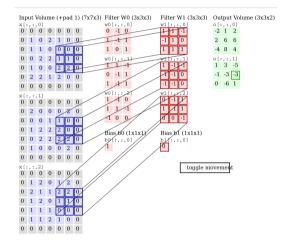
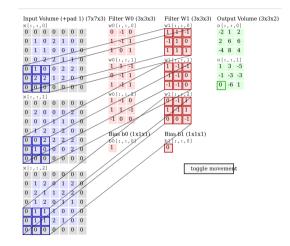


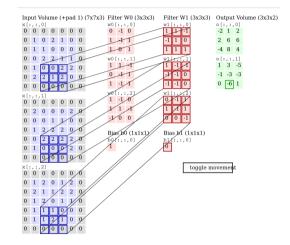
Figure reproduced from Le Cun et al. Deep Learning. 2015





Back to Top





Back to Top

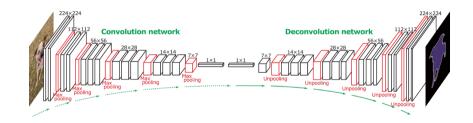
More formally, CNNs exploit some key properties when operating on images

Success of CNNs in computer vision is due to several properties.

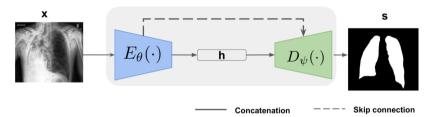
Consider a translation operation T(x) = (x - v)

- Translation invariance: y = f(T(x)) = f(x), or
- Translation equivariance: y = f(T(x)) = T(f(x))
- Scale separation: Long range dependencies from multi-scale interaction terms
- Compositionality: $\mathbf{y} = f_1 \circ f_2 \circ \cdots f_L(\mathbf{x})$ where $f_i(\cdot)$ are comprised of convolution kernels, non-linearities and sometimes pooling operations.

Fully Convolutional Neural Network (FCNN) for Image outputs

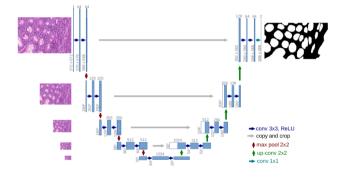


Closer look at the U-net (aka work-horse CNN model for image segmentation)



- Supervised segmentation model
- Encoder-decoder type neural network
- Encoder and Decoder are comprised of several layers of CNNs
- Encoder and decoder paths communicate via skip connections

U-net architecture



Source Ronneberger et al. 2015

Laplacian pyramids?

Summary

- Image analysis is a challenging sub-domain of Computer Vision
- Downstream tasks can be of huge consequence
- Automating IA can be beneficial to practitioners
- Opens up novel paradigms of handling large volumes of dat
- Model based methods can be powerful; they encode strong prior
- Trade-off between optimization and learning
- ML models are high variance and learned from data
- Data preparation is the most important step!
- CNNs are indispensable when working with images.
- U-net like models use CNNs in a hierarchical manner for segmentation
- Image analysis is a starting point for video analysis

Resources

https://github.com/DeepLabCut/DeepLabCut https://github.com/DeepLabCut/DLCutils

https://www.fast.ai/

