UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

Graph Refinement based Airway Extraction
Using Mean-field and Graph Neural Networks

Raghavendra Selvan
raghav@di.ku.dk

Department of Computer Science




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Outline

@ Airway Diseases
® Understanding the Data

©® Methods
Existing Methods
Graph Refinement Model
Mean-Field Networks
Graph Neural Networks

O Experiments

Slide 2 — Raghavendra Selvan — Graph Refinement based Airway Extraction



Outline

@ Airway Diseases

Slide 3 — Raghavendra Selvan — Graph Refinement based Airway Extraction



UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

COPD: Leading Factor of Morbidity & Mortality

e Tobacco Smoking

e Indoor & Outdoor Air pollution
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COPD: Leading Factor of Morbidity & Mortality

Tobacco Smoking
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174.5M affected; 3.2M deaths (2015)
Destruction of lung tissue (Emphysema)

Change of airway morphology
(Bronchiectasis)
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Existing Diagnostics are Rudimentary & Tedious

e Lung Function Tests
+ Simple and inexpensive
— Patient dependent
— Low reproducibility
— Mild cases go unnoticed
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Existing Diagnostics are Rudimentary & Tedious

e Lung Function Tests

+ Simple and inexpensive
Patient dependent
Low reproducibility
Mild cases go unnoticed

e 3D CT Scans

+ Provide more information

— Arduous to read the data; even for
experts

— Low inter-observer agreement
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Objective

Automatic Airway Segmentation and obtain useful COPD biomarkers
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Primary Data from Danish Lung Cancer Study

Danish Lung Cancer Screening Trial !
Low-dose CT

> 10, 000 scans

Age 50-70 years.

Smoker or former smoker (> 20 pack years)

32/10,000 have segmentations verified by an expert user!

!Pedersen, J. H., et.al : The Danish randomized lung cancer CT screening
trialoverall design and results of the prevalence round. Journal of Thoracic
Oncology, (2009)
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CT Images are noisy, low contrast & low-res.

e Volume resolution ~ 300x250x275
e Voxels ~ 0.75mmx0.75mmx1mm
e Challenges

Acquisition noise

Inter-patient variability

Several “interfering” structures
— Labels/Annotations
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Most Existing Methods handle occlusions poorly

State-of-the-art: Region-growing (!) based methods

EXACT Study? compares 15 methods; No clear winner

Small airways are challenging

Challenging to overcome occlusions

2|0, P., et.al : Extraction of airways from CT (EXACT'09). IEEE Transactions
on Medical Imaging, (2012)
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Graph Refinement Model for Airway Extraction
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Graph Refinement Model for Airway Extraction

Desired Properties

e Exploratory (to overcome occlusions)
e Detect small airways

e Uncertainty estimates
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Preprocess Image to Graph Model

One possibility ...
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Preprocess Image to Graph Model

One possibility ...

Figure 1: Visualisation of the pre-processing carried out to transform
the input image (left) into a probability image (center) and then into
graph format (right). Nodes in the graph are shown in scale to capture
the variations in their local radius.
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Graph Refinement Model

e Input graph: G; : {N, &}
e Node features: X € RF*N
e Input adjacency: A; € {0, 1}V<N
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Graph Refinement Model

e Input graph: G; : {N, &}
e Node features: X € RF*N
e Input adjacency: A; € {0, 1}V<N

Graph Refinement Task
f(gi) —+G

Output subgraph G with £ C &;; A € {0, 1}V*N
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Visualise Graph Refinement Task

50 100 150
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Updating Probabilistic Graphical Model

e Binary random variable to capture existence of edge between nodes
e s; € {0,1} with prob. a;; € [0,1]
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Updating Probabilistic Graphical Model

Binary random variable to capture existence of edge between nodes
sij € {0,1} with prob. «; € [0,1]

For each node: s; = {s;} : j=1...N

Global connectivity variable: S = [s; ... sp]

e Each instance of S an N x N adjacency matrix
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Updating Probabilistic Graphical Model

Binary random variable to capture existence of edge between nodes
sij € {0,1} with prob. «; € [0,1]

For each node: s; = {s;} : j=1...N

Global connectivity variable: S = [s; . ..sp]

Each instance of S an N x N adjacency matrix

Input Graph G; is completely described by X, A;,

Posterior density of interest: p(S|X, A;)

In p(S|X) o In p(S, X)
=—InZ+ Z bi(si) + Z di(si,sj),

ieN (ij)e€E
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Variational Approximate Inference
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Variational Approximate Inference

p(S|X, A;) is intractable except for in trivial cases.
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Variational Approximate Inference

p(S|X, A;) is intractable except for in trivial cases.

p(SIX, A;) ~ q(S)
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Variational Approximate Inference

p(S|X, A;) is intractable except for in trivial cases.

p(SIX, A;) ~ q(S)

Variational Approximate Inference

Minimize ELBO to obtain g(S) € Q

F(ds) = In Z + Eqe | In p(S|X) — Inq(S)]
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Simpler approximation using MFA
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Simpler approximation using MFA

a(S) =[] I] ai(s):

i=1 j=1

Oé,:,' IfSU:].

where, g;(s;) = {(1 — o) if ;=0
i v

Slide 18 — Raghavendra Selvan — Graph Refinement based Airway Extraction



UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Simpler approximation using MFA

a(S) =[] I] ai(s):

i=1 j=1

Oé,:,' IfSU:].

where, g;(s;) = {(1 — o) if ;=0
i v

Assumes edges to be independent.

Slide 18 — Raghavendra Selvan — Graph Refinement based Airway Extraction



UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER S

Node and Pairwise Potentials for MFA
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Node and Pairwise Potentials for MFA

Node Potential

For each node i € NV,

D
¢,‘(S,’) = Zﬂvﬂ[zsu = Vi| aF aTx,- ZS,'J',
v=0 Jj J
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Node and Pairwise Potentials for MFA

Node Potential
For each node i € N,

D
(b,'(S,') = Zﬂvﬂ[zsu = Vi| aF aTx,- ZS,'J',
v=0 Jj J

Pairwise Potential
For each edge,(/,j) € &;

dii(si 85) = M1 — 2|sj — s;i]) + (25557 — 1) [nTle — x| + VT(X:'XJ)]-

Parameters = [3,a, A\, n, V]
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Minimize ELBO to get MFA lIterations

MFA lterations

QSH) =0 () = k={1...N}, | €N,

14 exp=w

where o(-) is sigmoid activation, N are neighbours of node k, and
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Minimize ELBO to get MFA lIterations
MFA lterations

41
Oéfd = =0 (V)

I
'—\
I

m {1N},/€Nk,

where o(-) is sigmoid activation, N are neighbours of node k, and
(1)

T = H (1- O‘g')){ Z CE+rn(,:) [(52 )
JEN! meN\I (1- CVkm)
(t)
_ B2 Z Oékn(t) ] + (ﬁ 50)} +a Xk
neN\I,m (1 - )

+(4a§,f )\ + 2a(t) (nT|xk — x| + I/T(kal)).
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MFA to Mean-Field Networks

e MFA lIterations resemble feed-forward operations in neural network

1 1
ag—i_):J(’)’kl)szkZ{l...N}, /E/\fk,

Q is soft prediction of global connectivity variable

Slide 21 — Raghavendra Selvan — Graph Refinement based Airway Extraction



UNIVERSITY OF COPENHAGEN

MFA to Mean-Field Networks

e MFA lIterations resemble feed-forward operations in neural network

(t+1) 1

Q is soft prediction of global connectivity variable
e T —iterations as a T —layered network

e Automatic differentiation to learn parameters: L(cx, A,), where A, is
reference adjacency.

DEPARTMENT OF COMPUTER SCIENCE
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Summarising MFN
vy k2

Node Features, X .

o

\

(1) (2 m

Mean-Field Layers/
__ Graph Neural Network Layers

Slide 22 — Raghavendra Selvan — Graph Refinement based Airway Extraction



UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Summarising MFN

Yields approximation to underlying posterior

Simple factors

Handful of parameters

Easy to optimise

Hand-crafting potentials is cumbersome

Might not generalise across applications
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Graph Neural Networks

e Neural networks operating
directly on graph structured data
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Graph Neural Networks

e Neural networks operating
directly on graph structured data

o Generalisation of message
passing algorithms
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Graph Neural Networks

e Neural networks operating
directly on graph structured data

o Generalisation of message
passing algorithms
o Arbitrarily complex messages
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Graph Neural Networks

Neural networks operating
directly on graph structured data

Generalisation of message
passing algorithms

Arbitrarily complex messages

End-to-end trainable inference
systems
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Graph Neural Networks

Neural networks operating
directly on graph structured data

o Generalisation of message
passing algorithms b Factor graph c
« . GNN node h, GNN node h,
o Arbitrarily complex messages 1 b
e End-to-end trainable inference
systems Figu re: Two mappings of Factor Graphs into GNNs

Figure from Yoon et al. "Inference in probabilistic graphical models by Graph Neural Networks” (2018)
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Graph Auto Encoder (GAE) for Graph Refinement
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Graph Auto Encoder (GAE) for Graph Refinement

e Encoder comprises of GNNs; Message passing between nodes
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Graph Auto Encoder (GAE) for Graph Refinement
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e Jointly train to learn useful embeddings
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GAE Model for Graph Refinement: Encoder
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GAE Model for Graph Refinement: Encoder

Encoder:
Node Embedding: h} = gn(x))
Node-to-Edge mapping: h(l,-d-) = gn2e([h}7 h} )
N;
Edge-to-Node mapping: hJ? = ge2n(z h(l,',j)])
Node-to-Edge mapping: h ;) = gne([h7, h7])
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GAE Model for Graph Refinement: Encoder

Encoder:
Node Embedding: h} = gn(x))
Node-to-Edge mapping: h(I,J) = gn2e([h}7 h} )
N;
Edge-to-Node mapping: hJ? = ge2n(z h(l,',j)])
Node-to-Edge mapping: h ;) = gne([h7, h7])

g..(+) are 2-layered MLPs, with ReLU, dropout and layer normalisation
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GAE Model for Graph Refinement: Decoder

Decoder:
Q= O-(gdeC(h?i,j))) (2)

Zdec 1S @ 1D convolutional layer with one output channel
Model can be trained by computing the loss Lo, A,
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Summarising GNNs
vy k2

Node Features, X .

o

\

(1) (2 m

Mean-Field Layers/
__ Graph Neural Network Layers
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Training both models: Dice Loss

To tackle Class Imbalance:
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Training both models: Dice Loss

To tackle Class Imbalance:

N
2 Zi,j:l jjAjj
N 2 N 27
D1 O T e A

Aj are individual binary entries A,

L(OLA,)=1-
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Data

Danish Lung Cancer Screening Trial

Low-dose Chest CT scans

32 scans with “Reference” annotations

100 scans with automatic segmentation

Slide 31 — Raghavendra Selvan — Graph Refinement based Airway Extraction



UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Results

e Error Measure based on centerline distances
o Average of two distances, de,, = (drp + dry)/2
e Compared with Top Performer on Airway Extraction Challenge

Table I: Performance comparison

Method dpp(mm)  dppn(mm) derr (Mmm)

Voxel Classifier 3.871 5.108 4.489 £+ 0.754
MFEN 3.716 3.992 3.845 £ 0.415
GNN 3.513 2.890 3.202 £ 0.386
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