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Image Analysis as Signal Processing

One person’s noise can be another’s signal!
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The “Classical” Pipeline

• Preprocessing: Thresholding, Morphological operations

• Feature Extraction: Primarily Filtering

• Decision Making: Disease prediction, vehicle
navigation, landscape change

• Image Analysis
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Common Image Analysis Tasks

• Classification

• Localisation

• Segmentation

• Registration

http://cs224d.stanford.edu/index.html
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The “Classical” Pipeline: Root

Segmentation Task

Objective: Detect and measure roots from soil
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The “Classical” Pipeline: Root

Segmentation Task

Method: Frangi Vesselness filter plus region growing
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End-to-End Pipeline

• Reduce error propagation

• Learn features from examples

• Objective from final decision making

• Conditioned on labels, can be powerful
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End-to-End Pipeline: Root Segmentation

Task

• U-Net based segmentation

• Extensive data augmentation

• Specialised loss function

F1 Score: Frangi=0.462, U-Net=0.701
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Learning features is good! But....

https://xkcd.com/1838/

• High quality labelled data

• Or, artifical data

• Domain knowledge not
utilised

• Generalisation problems

Slide 10 — Raghavendra Selvan — Features for Image Analysis —



un i v er s i ty of copenhagen department of computer sc i ence

Learning features is good! But....

https://xkcd.com/1838/

• High quality labelled data

• Or, artifical data

• Domain knowledge not
utilised

• Generalisation problems

Slide 10 — Raghavendra Selvan — Features for Image Analysis —



un i v er s i ty of copenhagen department of computer sc i ence

Learning features is good! But....

https://xkcd.com/1838/

• High quality labelled data

• Or, artifical data

• Domain knowledge not
utilised

• Generalisation problems

Slide 10 — Raghavendra Selvan — Features for Image Analysis —



un i v er s i ty of copenhagen department of computer sc i ence

Between Crafting and Learning features?

• Incorporate useful domain knowledge (Priors)

• Reduce dependency on high quality labels (Weak
Labels)

Additionally,

• Uncertainty estimation

• Intepretability

• Tractability

One such example...
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Recent work: Airway Tree Segmentation

• Approximate Bayesian Inference

• Mean-Field Networks

• Graph Neural Networks
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Visual Summary of Airway Extraction

using GNNs
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To summarise.

• Image analysis has evolved extensively in recent years

• Classical model based methods have limitations

• Powerful feature extraction possible using end-to-end
learning

• Heavy dependency on labelled data

• A bridge between these two can be good trade-off
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