UNIVERSITY OF COPENHAGEN

Tensor Networks for Medical Image Classification Presented at MIDL, 2020

Raghavendra Selvan & Erik B. Dam

Dept. of Computer Science, University of Copenhagen

raghav@di.ku.dk ∑@SuperVoxel

Code: https://github.com/raghavian/lotenet_pytorch/

Overview

- Motivation
- Background
- Locally orderless Tensor Networks
- Experiments
- Summary & Conclusion

How far can we push linear decision boundaries?

UNIVERSITY OF COPENHAGEN

Decision boundaries in low/high dimensions

Kernelizing to higher dimensions (SVMs) Non-linear decisions in lower dimensions (NNs)

Tensor networks

Linear decision boundaries in exponentially high dimensional spaces.

One slide introduction to tensor notation

Figure 1: (left) Tensor notation depicting a scalar s, vector v^i , matrix M^{ij} and a general 3-D tensor T^{ijk} . (center) Tensor notation for matrix multiplication or *tensor contraction*, which are used extensively in the matrix product state networks used in this work. We adhere to the convention that the contracted indices are written as subscripts. (right) Tensor notation for trace of product of two matrices.

Linear model in high dimensions: Feature Maps

Consider input image with N pixels, flattened as a vector $\mathbf{x} \in [0, 1]^N$

$$\Phi^{i_1,i_2,\ldots i_N}(\mathbf{x}) = \phi^{i_1}(x_1) \otimes \phi^{i_2}(x_2) \otimes \cdots \phi^{i_N}(x_N)$$
(1)

 $\phi^{i_j}(\cdot)$ is *d*-dimensional local feature map acting on pixel x_j :

$$\phi^{i_j}(x_j) = [\cos(\frac{\pi}{2}x_j), \sin(\frac{\pi}{2}x_j)]. \tag{2}$$

High dimensional feature maps

Dimensionality of the joint feature map $\Phi(\mathbf{x})$ is d^N due to tensor products i.e, an order N tensor

Linear model in high dimensions: Decision Rule

Decision rule for a multi-class classification task:

$$f(\mathbf{x}) = \arg\max_{m} f^{m}(\mathbf{x}), \qquad (3)$$

where $m = [0, 1, \dots, M - 1]$ are the M classes,

$$f^{m}(\mathbf{x}) = W^{m} \cdot \Phi(\mathbf{x}). \tag{4}$$

W has $M \cdot d^N$ tunable weights

With a gray scale image of size 100×100 as input and d = 2 W has $2 \cdot 2^{10000} \approx 10^{3010}$ parameters.

Approximate tensor dot product with MPS

Matrix Product State (MPS) is a type of Tensor Network Factorisation of order N tensor into chain of order 3 tensors

Approximate tensor dot product with MPS

Matrix Product State (MPS) is a type of Tensor Network Factorisation of order N tensor into chain of order 3 tensors

Reduces computation complexity from d^N to $N \cdot \beta^3 \cdot d$ (linear in N)

Overview

Motivation

Background

• Locally orderless Tensor Networks

Experiments

Summary & Conclusion

Slide 9 — Raghavendra Selvan — Tensor Networks for Medical Image Classification —

Tensor Networks for Medical Images

MPS is defined for 1-d inputs

2-d images are flattened in existing literature

Loss of spatial structure

Flattening discards useful information in medical images

Proposed idea

Flatten small regions assuming local orderlessness. Aggregate at multiple resolutions.

Locally orderless Tensor Network: LoTeNet

Extending Tensor Networks to medical images

- 1. Partition image into small patches
- 2. Squeeze patches to retain spatial information
- 3. Perform MPS contraction at patch level
- 4. Aggregate and perform squeeze + MPS at next resolution
- 5. Output decision boundary

LoTeNet: Partition and Squeeze

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	16	

Slide 12 — Raghavendra Selvan — Tensor Networks for Medical Image Classification —

LoTeNet: Partition and Squeeze

Squeeze operation with stride k = 2. A $4 \times 4 \times 1$ image patch is reshaped into $2 \times 2 \times 4$ stack which then yields a vector of size 4 with feature dimension d=4.

LoTeNet: Patch level MPS

LoTeNet: The Final Model

Figure 4: The proposed Locally orderless Tensor Network shown as a series of layers. Each layer consists of several MPS blocks. The squeeze operation is as described in Figure 3. The final MPS block outputs the predictions for the M classes depicted as the edge with index m.

Optimized using backpropagation.

Overview

Motivation

Background

Locally orderless Tensor Networks

• Experiments

Summary & Conclusion

Model Evaluation: PCam Dataset

The PatchCamelyon (PCam) dataset

Binary classification

Positive label indicates \geq One pixel with tumour

Image patches of size 96 \times 96 px

220k patches for training-validation (80 : 20)

57.5k test patches

UNIVERSITY OF COPENHAGEN

Model Evaluation: LIDC Dataset

 128×128 px image patches 15k patches. 60 : 20 : 20 splits for training/validation/test

Annotated by 4 radiologists. Originally a segmentation dataset

PCam Models	GPU (GB)	AUC
Rotation Eq-CNN		
DenseNet		
LoTeNet (ours)		
Tensor Net-X ($\beta = 10$)		

PCam Models	GPU (GB)	AUC
Rotation Eq-CNN		0.963
DenseNet		0.962
LoTeNet (ours)		0.943
Tensor Net-X $(\beta=10)$		0.908

PCam Models	GPU (GB)	AUC
Rotation Eq-CNN	11.0	0.963
DenseNet	10.5	0.962
LoTeNet (ours)	0.8	0.943
Tensor Net-X ($\beta = 10$)	5.2	0.908

PCam Models	GPU (GB)	AUC	LIDC Models	GPU~(GB)	AUC
Rotation Eq-CNN	11.0	0.963	LoTeNet (ours)	0.7	0.874
DenseNet	10.5	0.962	Tensor Net-X ($\beta = 10$)	4.5	0.847
LoTeNet (ours)	0.8	0.943	DenseNet	10.5	0.829
Tensor Net-X ($\beta = 10$)	5.2	0.908	Tensor Net-X ($\beta = 5$)	1.5	0.823

Conclusion

- + Fully linear decision boundary
- + Single model hyperparameter (β)
- + Squeeze operation helps retain structure
- + LoTeNet performs competitively
- + Massive reduction in GPU utilization
- Tendency to overfit
- Not optimized for efficiency, yet

Summary

Proposed LoTeNet for medical image classification Different paradigm compared to feed-forward NNs or CNNs Low GPU memory requirement (< 10%) New and exciting applications are to be expected

Questions

Thanks to Jacob Miller for TorchMPS ¹ Model and data are available here: https://github.com/raghavian/lotenet_pytorch raghav@di.ku.dk

¹https://github.com/jemisjoky/TorchMPS

Slide 21 - Raghavendra Selvan - Tensor Networks for Medical Image Classification -