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Parameter Estimators

If Y is the observed data and X are the parameters of interest,
then

Maximum Likelihood (ML)

X̂ML = arg max
X

p(Y|X) ≡ `(X|Y)

Bayesian estimation

p(X|Y) = p(X)p(Y|X)
p(Y)

posterior ∝ prior × likelihood

Obtain point estimates from the posterior: Mean yields
Minimum Mean Squared Error (MMSE) estimator, whereas, the
mode yields Maximum A Posteriori estimator.
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Parameter estimation-II

Sequential parameter estimation
Estimating parameters from sequentially obtained data,
generated by a dynamical systems, which change state with
time.
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Uncertainties in measurement origin

xt−1 xt xt+1

yt−1 yt yt+1

kt−1 kt kt+1

• When performing sequential parameter estimation,
uncertainties in measurement origin, if any, must be first
resolved in order to estimate the parameters.

• Data association uncertainties can be interpreted as
hidden and unobserved variables.
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Data association uncertainties

There are many reasons for uncertainties in data association.
• Measurement noise, R.
• Clutter measurements, βc.
• Missed detections, PD.
• Sensor resolution.

One of the primary challenges in multi-target tracking, hence
also the main focus in this thesis.
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Multi-Target Tracking
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Optimal solution is intractable!
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Problem and solutions

Problem formulation
To estimate target trajectories from the obtained
measurements, after resolving the problem of data association
uncertainties, while satisfying point target model assumptions.
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Existing MTT solutions approximate the optimal solution.
• Pruning data association hypotheses – Global Nearest

Neighbour (GNN).
• Merging them – Joint Probabilistic Data Association

(JPDA).
• Deferred decision plus pruning – Multiple Hypothesis

Tracking (MHT).
• Iterative optimization – Probabilistic MHT (PMHT).

We perform iterative optimization, using pruning and merging.
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Expectation Maximization (EM)

The EM algorithm
Iterative algorithm used to approximate MAP/ML estimates
from incomplete data, or models with hidden variables.

• The idea is natural and intuitive.
• Particularly useful when dealing with models with hidden

variables.
• Lower bounds the objective function being evaluated.
• Guarantees convergence (at least to a local optimum).
• MTT solutions using PMHT already exist.
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Lower bounding the objective function

MAP estimation from a model with hidden variables K,

X̂ = arg max
X

p(X|Y) ≡ arg max
X

ln p(X,Y)

Objective function ln p(X|Y) is not tractable, due to the presence
of hidden variables.

ln p(X,Y) = ln
∑

K

p(X,K,Y)

= ln
∑

K

qK(K)
p(X,K,Y)

qK(K)

≥
∑

K

qK(K) ln
p(X,K,Y)

qK(K)
, F(qK ,X)

Using Jensen’s inequality: For a concave function,
f (E(x)) ≥ E(f (x)).
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E and M steps
The lower bound has two free variables F(qK ,X). E and M
steps correspond to the iterative maximization of the lower
bound wrt qK(K) and X, while keeping the other fixed.

E-step

q(n+1)
K (K) = arg max

qK
F(qK ,X(n))

= Pr{K|X(n),Y}

M-step

X̂(n+1) = arg max
X
F(q(n+1)

K ,X)

= arg max
X

∑
K

Pr{K|X(n),Y} ln p(X,K,Y).
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EM in action
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Contributions

Two algorithms, for tracking multiple point targets, based on
EM. Using EM terminology,

Proposed Algorithm I
Data association uncertainties are treated as hidden variables,
and target states as parameters of interest. Thus, density over
data association variables and point estimates of target states.

Proposed Algorithm II
Target states are treated as hidden variables, and data
association variables as parameters of interest. Thus, density
over target states and point estimates of data association.

The resulting algorithms can be implemented using simpler,
standard solution blocks like smoothing, auction algorithm and
by computing marginal probabilities.
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Proposed Algorithm I

Overview of the algorithm:
• Data association variable is treated as hidden.
• Point estimates of target states.
• Close to PMHT, as both use EM.
• Different from PMHT, as PMHT assumes extended targets.
• Implemented using smoothing and computation of

marginal data association probabilities.
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E & M steps in Proposed Algorithm I

E and M steps

q(n+1)
K (K) = Pr{K|X(n),Y}

X̂(n+1) = arg max
X

∑
K

Pr{K|X(n),Y} ln p(X,K,Y).

• Computing the data association probabilities, for all
possible hypotheses is expensive. Instead, approximate
marginal data association probabilities are computed.

• M-step using RTS smoother.
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Marginal data association probabilities

Hyp. T1 T2 T3 Hyp. Prob.
H1 1 2 3 0.35
H2 1 3 2 0.1
H3 2 1 3 0.25
H4 2 3 1 0.05
H5 3 1 2 0.15
H6 3 2 1 0.2

Table: Illustration of marginal probabilities calculation

w11 = 0.35 + 0.1 = 0.45

w12 = 0.25 + 0.05 = 0.3

w13 = 0.15 + 0.2 = 0.35
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Hyp. T1 T2 T3 Hyp. Prob.
H1 1 2 3 0.35
H2 1 3 2 0.1
H3 2 1 3 0.25
H4 2 3 1 0.05
H5 3 1 2 0.15
H6 3 2 1 0.2

Table: Illustration of marginal probabilities calculation

w11 = 0.35 + 0.1 = 0.45

w12 = 0.25 + 0.05 = 0.3

w13 = 0.15 + 0.2 = 0.35

This brute force approach is intractable for large number of
targets. In the proposed algorithm, marginal probabilities are
approximated using Loopy Belief Propagation.
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Proposed algorithm II

Overview of the algorithm:
• Target states are treated as hidden.
• Point estimation of data association variable.
• Can be interpreted as iterative GNN, performing local

optimizations.
• Implemented using smoothing and 2-D auction algorithm.
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E & M steps in Proposed Algorithm II

E and M steps

q(n+1)
K (X) = p(X|K(n),Y)

K̂(n+1) = arg max
K

∫
p(X|K(n),Y) ln p(X,K,Y)dX.

• No need to compute marginal data association
probabilities.

• E-step easily implemented using RTS smoother.
• M-step can be implemented using 2-D auction algorithm.
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2-D auction algorithm

Measurement 1 Measurement 2 Measurement 3

Target 1 -1 -10 -8

Target 2 -4 -12 -7

Target 3 -10 -5 -15
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Conclusions

• EM can be used to obtain approximate MTT solutions.

• Resulting algorithms have been implemented using
simpler, existing solution blocks.

• Treating data association variable as hidden, results in an
algorithm similar to PMHT, but for point target model
assumptions.

• Computing marginal data association probabilities can be
approximated using LBP.

• Treating data association variable as parameter of interest,
results in an iterative GNN and smoothing based algorithm.

• Both the proposed algorithms have shown improved
MOSPA performance, approaching TOMHT.

• Significant computational advantage over TOMHT.
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Future work

• Extend both solutions to include track maintenance.

• Investigate possibilities of online solutions.
• Incorporating non-linear models.
• Robust initialization for EM.
• Relating the solutions to the Variational Bayesian

framework.
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Thank you for listening.
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