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Respiratory diseases: Major cause of morbidity & mortality

Source: Global Health Estimates 2016, World Health Organization, 2018
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Respiratory diseases adversely affect airways

Image adapted from Wikimedia Commons

Particularly, airway morphology
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Existing diagnostics are rudimentary

Image sourced from Wikimedia Commons

Lung Function Tests

+ Non-invasive

+ Inexpensive

+ Reliable, mostly

– Little or no insight on pathophysiology

– Patient dependent

– Low reproducibility

– Mild cases can go unnoticed
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Imaging based Computer Aided Diagnosis

Computed Tomography (CT) chest scans

• High-resolution imaging

• Pathophysiology can be studied

• Possibility of automated analysis
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Imaging based analysis of airways & challenges

Three primary steps:

1 Detection of airways

2 Measurement of airway morphology

3 Deriving biomarkers

Coronal view of chest CT scan
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Methods exist. Majority of them are sequential

Sequential segmentation methods

• Susceptible to occlusions in data

• Small branches are challenging

• EXACT’09 Study

o Airway extraction challenge
o Compares 15 methods
o 10 use region growing!

Lo, P., et.al : Extraction of airways from CT (EXACT’09). IEEE Transactions on Medical
Imaging, (2012)
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Objective of this thesis

Extraction of airways from volumetric data
With automatic methods that:

• Are exploratory

• Use more global information in local decisions
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Data from Danish Lung Cancer Screening Trial

(DLCST)

• > 10, 000 Low-dose CT from 2052 subjects

• Smoker or former smoker (> 20 pack years)

• Voxels ∼ 0.75× 0.75× 1 mm3

Pedersen, J. H., et.al : The Danish randomized lung cancer CT screening trial – Overall
design and results of the prevalence round. Journal of Thoracic Oncology, (2009)
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Multiple Hypothesis Tracking (MHT)

Work based on

[1] Raghavendra Selvan, Jens Petersen, Jesper H. Pedersen, and Marleen de Bruijne.
“Extracting Tree-structures in CT data by Tracking Multiple Statistically Ranked
Hypotheses” (2018). (Under review)

[2] Raghavendra Selvan, Jens Petersen, Jesper H. Pedersen, and Marleen de Bruijne.
“Extraction of airway trees using multiple hypothesis tracking and template
matching”. In The Sixth International Workshop on Pulmonary Image Analysis.
MICCAI, 2016.
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Improvements to an established method

• MHT is extensively used in object tracking

• Interactive vessel segmentation method
(Friman et al. 2010)

• Modifications render it automatic; suitable
for airway tree extraction

o New scale-invariant statistic
o Improved bifurcation handling

• Significant performance improvement

Friman, Ola, et al. ”Multiple hypothesis template tracking of small 3D vessel structures.” Medical image analysis 14.2
(2010): 160-171.
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Bayesian Smoothing

Work based on

[1] Raghavendra Selvan, Jens Petersen, Jesper H. Pedersen, and Marleen de Bruijne.
“Extraction of airways with probabilistic state-space models and Bayesian
smoothing.” In Graphs in Biomedical Image Analysis, Computational Anatomy
and Imaging Genetics, MICCAI, 2017, pp. 53-63. Springer, Cham.
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Airway extraction with Bayesian smoothing

Idea
• Track candidate branches from across the volume

• Use uncertainty measures to qualify branches

State-space models on sparse point cloud data

Dense Volume Sparse point cloud Tracked branches Qualified branches
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State-space model

• Airway tree as a set of independent branches
X = {X1, . . . ,XT}

• Each branch as a sequence of state vectors
Xi = [x0, x1, . . . , xli ]

• State vector at each step
xk = [x , y , z , r , vx , vy , vz ]T

• Sparse, vectorised image
data Y = [y0, . . . , yT ];
yk = [x , y , z , r ]T
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Probabilistic state-space models

Process model

p(xk |xk−1) ≡ xk = Fxk−1 + q (1)

F: State transition function, q ∼ N(0,Q): Process noise

Measurement model

p(yk |xk) ≡ yk = Hxk + m (2)

H: Measurement function, m ∼ N(0,R): Measurement noise
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Extraction of branches from posterior distribution

Estimation of p(X|Y)

p(X|Y) ≈
T∏
i

p(Xi |Y) (3)

Recursive estimation of p(Xi |Y) using RTS5 smoother

• Off-the-shelf Bayesian smoother

• Closed form, simple-to-compute

• Gaussian density estimates at each step

• Inherent uncertainty measure

5Rauch-Tung-Striebel
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Qualification of tracked branches

• Exploratory nature → Several candidate branches

• Qualify branches based on posterior covariance

• Measures branch fitness to the model

µi =

∑li
k=1 Tr(Pk|k)

li
. (4)

Pk|k is posterior covariance matrix at step k .
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Data

• Data from DLCST

• Reference dataset (32 scans)

• Additional 100 scans; automatic
segmentations

Pedersen, J. H., et.al : The Danish randomized lung cancer CT screening trialoverall design
and results of the prevalence round. Journal of Thoracic Oncology, (2009)
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Preprocessing of data

• Trained voxel classifier to obtain probability images (Lo et al.2010)

• Multi-scale Laplacian of Gaussians to obtain sparse point cloud

Lo, Pechin, et al. ”Vessel-guided airway tree segmentation: A voxel classification approach.”
Medical image analysis 14.4 (2010): 527-538.
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Experiments

• Baseline: Region growing on probability images

• Bayesian smoothing merged with region growing for evaluation

• Eight-fold cross validation

• Error measures:

o Average centerline distance: derr = (dFP + dFN)/2
o dFP ≡ Specificity
o dFN ≡ Sensitivity
o Percentage of tree length (TL)
o False positive rate (FPR)
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Performance comparison

dFP(mm) dFN(mm) derr (mm) TL.(%) FPR(%)

Vox+RG 3.624± 0.776 5.155± 0.580 4.389± 0.441 79.6± 7.2 5.0± 3.9
BS+RG 3.921± 0.612 4.218± 0.334 4.069± 0.476 82.3± 6.1 8.7± 3.4

• dFP ≡ Specificity

• dFN ≡ Sensitivity

• Average centerline distance: derr

• Percentage of tree length (TL)

• False positive rate (FPR)
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Visualisation of extracted airways

Vox+RG BS+RG

Legend: Reference (pink), True Positive (Yellow), False Negative (Black), False Positive (Blue)

Slide 28 — Raghavendra Selvan — Extraction of Airways from Volumetric Data



un i v er s i ty of copenhagen department of computer sc i ence

Summary

+ Airway extraction in probabilistic state-space model setting

+ Bayesian smoothing method to track branches

+ Exploratory algorithm

+ Uncertainty estimates used to validate branches

+ Multivariate Gaussian density estimates /node/branch

– Increase in false positives

– Disconnected branches
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Graph Refinement Models

Work based on

[1] Raghavendra Selvan, Thomas Kipf, Max Welling, Jesper H. Pedersen, Jens
Petersen, and Marleen de Bruijne. “Graph Refinement based Tree Extraction
using Mean-Field Networks and Graph Neural Networks” (2018). (In progress)

[2] Raghavendra Selvan, Max Welling, Jesper H. Pedersen, Jens Petersen, and
Marleen de Bruijne. “Mean field network based graph refinement with
application to airway tree extraction.” 21st Conference on Medical Image
Computing & Computer Assisted Intervention (MICCAI 2018), pp. 750-758,
Cham. Springer International Publishing.

[3] Raghavendra Selvan, Thomas Kipf, Max Welling, Jesper H. Pedersen, Jens
Petersen, and Marleen de Bruijne. “Extraction of Airways using Graph Neural
Networks.” 1st Conference on Medical Imaging with Deep Learning (MIDL
2018), Amsterdam.
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Graph Refinement Model for Airway Extraction

Motivation
• Building on Bayesian smoothing method

• Graphs with features derived from Gaussian density

• Optimise global connectivity, instead of qualifying individual branches
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Volumetric data to Graph data

• Overconnected input graph: Gin : {V , Ein}, with |V| = N

• Node features: X ∈ RF×N

• Input adjacency: Ain ∈ {0, 1}N×N
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Airway extraction as Graph Refinement task

Graph Refinement Model

f : Gin → G
Output subgraph G with E ⊂ Ein; A ∈ {0, 1}N×N
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Probabilistic Graphical Model for MFN

• Binary random variable
sij ∈ {0, 1} with prob. αij ∈ [0, 1]

• For each node: si = {sij} : j = 1 . . .N

• Global connectivity variable: S = [s1 . . . sN ]

• Instances of S are N × N adjacency matrices

Posterior density of interest: p(S|X,Ain)

ln p(S|X,Ain) ∝ ln p(S,X,Ain)

=
∑
i∈N

φi(si) +
∑

(i ,j)∈E

φij(si , sj)− lnZ ,
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Node and Pairwise Potentials for MFA

Parameters = [·]
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Node and Pairwise Potentials for MFA

Parameters = [β, a]
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Node and Pairwise Potentials for MFA

Parameters = [β, a, λ]
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Node and Pairwise Potentials for MFA

Parameters = [β, a, λ,η, ν]
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Approximate posterior density with a simpler one

Mean-Field Factorisation: q(S) ∈ Q

q(S) =
N∏

i=1

N∏
j=1

qij(sij), (5)

Implication: Node connectivities are independent.

Variational Inference to approximate p(S|X,Ain)

p(S|X,Ain) ≈ q(S) (6)

Minimize KL Divergence ≡ Maximize Evidence Lower Bound (ELBO)

ELBO(q) = −KLD(q(S)||p(S|X,Ain)
]

+ lnZ (7)
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Variational Inference to approximate p(S|X,Ain)

p(S|X,Ain) ≈ q(S) (6)

Minimize KL Divergence ≡ Maximize Evidence Lower Bound (ELBO)

ELBO(q) = −KLD(q(S)||p(S|X,Ain)
]

+ lnZ (7)
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Maximising ELBO wrt qij(sij) yields MFA Iterations

MFA Iterations

α
(t+1)
kl = q

(t+1)
kl (skl == 1)

=
1

1 + exp−γkl

∀ k = {1 . . .N}, l ∈ Nk

α: Global connectivity prediction

  

K

L

Note: MFA iterations resemble feed-forward operations in neural nets
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MFA as Mean-Field Networks
• T−iterations as a T−layered network

• Gradient descent to learn model parameters: L(α,Ar )

  

Mean-Field Network Layers/
Mean-Field Approximation Iterations

(1) (2) (T)

α(0)=A
i
 α(1) α(T)

Node Features, X
NxF
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Experiments

• Same set-up as with Bayesian smoothing

• Pretraining dataset used to tune hyperparameters

• Eight fold cross validation
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Increasing ELBO =⇒ Better approximation
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Performance comparison

dFP(mm) dFN(mm) derr (mm) TL(%) FPR(%)

Vox+RG 3.624± 0.776 5.155± 0.580 4.389± 0.441 79.6± 7.2 5.0± 3.9
BS+RG 3.921± 0.612 4.218± 0.334 4.069± 0.476 82.3± 6.1 8.7± 3.4
MFN 3.599± 0.583 3.491± 0.295 3.595± 0.321 83.1± 6.7 8.6± 5.3

• dFP ≡ Specificity

• dFN ≡ Sensitivity

• Average centerline distance: derr

• Percentage of tree length (TL)

• False positive rate (FPR)
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Visualisation of extracted airways

Vox+RG

BS+RG

MFN

Legend: Reference (pink), True Positive (Yellow), False Negative (Black), False Positive (Blue)
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Summary

• Airway extraction as graph refinement

• Novel use of Mean-Field Approximation

• Proposed expressive node and pairwise potentials

• Mean-Field Network interpretation

• Few parameters (46 scalar weights)

• Easy to optimise using gradient descent

– Might not generalise across applications

– Hand-crafting potentials is cumbersome
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Graph Neural Networks

• Neural nets with graph input

• Step towards non-Euclidean (geometric) Deep Learning

• Generalisation of message passing algorithms

• Complex task-specific messages can be learnt

• End-to-end trainable inference systems
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GNN based Graph Refinement

• Graph refinement task: f : Gin → G
• GNN based encoder-decoder pair

• Encoder comprises stacks of GNNs; Message passing between nodes

• Joint training of encoder-decoder pair to learn useful embeddings

• Simple decoder predicts graph connectivity
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GNN Model for Graph Refinement

Consider node j with neighbours Nj ,

g...(·) are MLPs, gdec is MLP with 1 output channel
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Summarising GNN Model

  
Graph Neural Network Layers

Encoder

(1) (2) (T)

H(0)=X H(1) α

Node Features, X
NxF

Decoder

H(T)=Z

A
I
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Experiments

• Same set-up as with Bayesian smoothing, MFNs

• Pretraining dataset used to tune hyperparameters

• Eight fold cross validation
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Performance comparison

dFP(mm) dFN(mm) derr (mm) TL(%) FPR(%)

Vox+RG 3.624± 0.776 5.155± 0.580 4.389± 0.441 79.6± 7.2 5.0± 3.9
BS+RG 3.921± 0.612 4.218± 0.334 4.069± 0.476 82.3± 6.1 8.7± 3.4
MFN 3.599± 0.583 3.491± 0.295 3.595± 0.321 83.1± 6.7 8.6± 5.3
GNN 3.045± 0.329 2.951± 0.757 2.998± 0.399 85.3± 6.7 4.7± 3.3

• dFP ≡ Specificity

• dFN ≡ Sensitivity

• Average centerline distance: derr

• Percentage of tree length (TL)

• False positive rate (FPR)
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Visualisation of extracted airways

Vox+RG

BS+RG

MFN

GNN

Legend: Reference (pink), True Positive (Yellow), False Negative (Black), False Positive (Blue)

Slide 54 — Raghavendra Selvan — Extraction of Airways from Volumetric Data



un i v er s i ty of copenhagen department of computer sc i ence

Summary

• GNN based supervised graph refinement

• Unique, inductive graph application of GNNs

• Edge embeddings used for prediction

• Competitive results with limited data

• Generalisations of MFNs

– Disconnected trees

– Relies on quality labelled training data
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Outline

1 Airway diseases and diagnosis

2 Objective of the study

3 Data

4 Contributions
Multiple Hypothesis Tracking
Bayesian Smoothing
Graph Refinement Models

5 Summary & Conclusions
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Summary of contributions

Addressed airway extraction from volumetric data with:

• Four exploratory methods
• Modified MHT method
• Bayesian smoothing
• Mean-Field Networks
• Graph Neural Networks

• Experimental validation on CT data

• Performance comparison with relevant baselines, mutual
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Conclusions from the study

• Exploratory methods can extract more branches

• Graph based representations are less computationally intensive

• Using global information in local decisions is helpful

• Incorporating prior knowledge is valuable

• MFNs as structured neural networks

• GNNs as generalisations of message passing algorithms

• Bias-variance trade-off between MFNs and GNNs
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And of course, The Image Section!
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