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Graph Refinement from Adjacency POV
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Equivalenty, Graph Refinement from Graph POV
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Graph Neural Networks (GNNs)

Figure: Two mappings of Factor Graphs into GNNs2

• Generalisation of message passing algorithms
• Arbitrarily complex messages
• End-to-end trainable inference systems

2Figure from Yoon et al. ”Inference in probabilistic graphical models by Graph Neural
Networks” (2018)
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Graph Auto-Encoders (GAEs)

Figure: Overview of Graph Auto-Encoders3

• Use GNN as encoder

• Learn an embedding space using encoder

• Output predicted adjacency using decoder
3Figure from Berg et al. ”Graph Convolutional Matrix Completion” (2017)
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GAE

Encoder

H(l+1) = σ
(
H(l)W(l)

0 + D−1AH(l)W(l)
1

)
, (1)

where A ∈ {0, 1}N×N is input adjacecny matrix, D is degree matrix
: Dii =

∑N
j=1 Aij , W0,W1 ∈ RE×E are GNN weights, H(l) ∈ RN×E are

hidden activations, H(0) = X and H(L) = Z.
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GAE

Decoder
α = g(Z) :

αij = exp−(zi − zj)
2, ∀(i , j) ∈ E . (2)

where αij is probability of edge between nodes i , j .

Dice Loss

L(A′,α) = 1−
2
∑N

i ,j=1 Aijαij∑N
i ,j=1 A

2
ij +

∑N
i ,j=1 α

2
ij

, (3)
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Overview of GAE for Graph Refinement

  
Graph Convolution Layers

Encoder

(1) (2) (T)

H(0)=X H(1) α

Node Features, X
NxF

Decoder

H(T)=Z
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Experiments

• 32 scans with ”ground-truth” for evaluation

• 100 scans with automatic reference for pre-training

• Compared with Mean-Field Networks4

4Selvan et al. ”Mean field network based graph refinement with application to
airway tree extraction” (2018)
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Preliminary Results
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Conclusions

• Novel application of GNN for graph refinement

• Possible improvements with more labelled data

• Current model captures node behaviour

• Potential improvements with Edge-GNNs
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