A. 6 19.94

UNIVERSITY OF COPENHAGEN

Graph Refinement using GNNs With a focus on Airway Extraction¹

Raghavendra Selvan raghav@di.ku.dk Department of Computer Science

¹Based on work in Selvan et al. "Extraction of Airways using Graph Neural Networks" (2018)

Graph Refinement from Adjacency POV

Equivalenty, Graph Refinement from Graph POV

Graph Neural Networks (GNNs)

Figure: Two mappings of Factor Graphs into GNNs²

- Generalisation of message passing algorithms
- Arbitrarily complex messages
- End-to-end trainable inference systems

 2 Figure from Yoon et al. "Inference in probabilistic graphical models by Graph Neural

Networks" (2018) Slide 4 — Raghavendra Selvan — Graph Refinement using GNNs

Graph Auto-Encoders (GAEs)

Figure: Overview of Graph Auto-Encoders³

- Use GNN as encoder
- Learn an embedding space using encoder
- Output predicted adjacency using decoder

³Figure from Berg et al. "Graph Convolutional Matrix Completion" (2017)

GAE

Encoder

$$\mathbf{H}^{(l+1)} = \sigma \Big(\mathbf{H}^{(l)} \mathbf{W}_0^{(l)} + \mathbf{D}^{-1} \mathbf{A} \mathbf{H}^{(l)} \mathbf{W}_1^{(l)} \Big), \tag{1}$$

where $\mathbf{A} \in \{0, 1\}^{N \times N}$ is input adjacecny matrix, \mathbf{D} is degree matrix : $D_{ii} = \sum_{j=1}^{N} A_{ij}$, $\mathbf{W}_0, \mathbf{W}_1 \in \mathbb{R}^{E \times E}$ are GNN weights, $\mathbf{H}^{(I)} \in \mathbb{R}^{N \times E}$ are hidden activations, $\mathbf{H}^{(0)} = \mathbf{X}$ and $\mathbf{H}^{(L)} = \mathbf{Z}$.

GAE

Decoder $\alpha = g(\mathbf{Z})$: $\alpha_{ij} = \exp{-(\mathbf{z}_i - \mathbf{z}_j)^2}, \quad \forall (i, j) \in \mathcal{E}.$ (2)

where α_{ij} is probability of edge between nodes i, j.

Dice Loss

$$\mathcal{L}(\mathbf{A}', \boldsymbol{\alpha}) = 1 - \frac{2\sum_{i,j=1}^{N} A_{ij} \alpha_{ij}}{\sum_{i,j=1}^{N} A_{ij}^2 + \sum_{i,j=1}^{N} \alpha_{ij}^2},$$
(3)

Overview of GAE for Graph Refinement

Experiments

- 32 scans with "ground-truth" for evaluation
- 100 scans with automatic reference for pre-training
- Compared with Mean-Field Networks⁴

 $^4 Selvan$ et al. "Mean field network based graph refinement with application to airway tree extraction" (2018)

Preliminary Results

T 11	1	DC	•	•	. 1.	1
Table	••	Performance	comparison	110110	centerline	distance
raute	1.	1 chroninance	comparison	using	contornine	unstance
				$\boldsymbol{\omega}$		

Method	$d_{FN}(\text{mm})$	$d_{FP}(mm)$	d_{err} (mm)
MFN GNN GNN+MFN	$2.571 \\ 2.890 \\ 2.014$	$0.835 \\ 3.913 \\ 3.345$	1.703 ± 0.186 3.402 ± 0.386 2.679 ± 0.264

Conclusions

- Novel application of GNN for graph refinement
- · Possible improvements with more labelled data
- Current model captures node behaviour
- Potential improvements with Edge-GNNs

