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Graph Neural Networks (GNNs)

Factor graph

GNN node h, GNN node h,,

message node fi; variable node p;
Figure: Two mappings of Factor Graphs into GNNs?

e Generalisation of message passing algorithms
o Arbitrarily complex messages
e End-to-end trainable inference systems

2Figure from Yoon et al. "Inference in probabilistic graphical models by Graph Neural

Networks” (2018)
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Graph Auto-Encoders (GAEs)
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Figure: Overview of Graph Auto-Encoders?

e Use GNN as encoder
e Learn an embedding space using encoder

e Output predicted adjacency using decoder
3Figure from Berg et al. " Graph Convolutional Matrix Completion” (2017) ®
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GAE

HO+D :a(H(’)Wg’)+D‘1AH(’)W§’)), (1)

where A € {0, 1}V*"N is input adjacecny matrix, D is degree matrix
1 D =S | Aj. Wo, Wy € REXE are GNN weights, H(!) € RV*E are
hidden activations, H(® = X and H(Y) = Z.
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GAE

Decoder

a=g(2Z):
o =exp—(z; —z;)?, V(i,j) € E. (2)

where «j; is probability of edge between nodes i, ;.

Dice Loss
2 I-V-_ A,"CM,"
LA @) =1— — Z’;l T (3)
Zi,j:l Aij + ZiJ:l 771
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Overview of GAE for Graph Refinement

Node Features, X, .

HO=X HM=Z
(0] @ m
Graph Convolution Layers Decoder
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Experiments

e 32 scans with "ground-truth” for evaluation
e 100 scans with automatic reference for pre-training

e Compared with Mean-Field Networks*

4Selvan et al. "Mean field network based graph refinement with application to

airway tree extraction” (2018)
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Preliminary Results
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Table 1: Performance comparison using centerline distance

Method dpy(mm) dpp(mm) deypr (Mm)

MFN 2.571 0.835 1.703 +0.186
GNN 2.890 3.913 3.402 £+ 0.386
GNN+MEN 2.014 3.345 2.679 + 0.264
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Conclusions

Novel application of GNN for graph refinement

Possible improvements with more labelled data

Current model captures node behaviour

Potential improvements with Edge-GNNs

Slide 11 — Raghavendra Selvan — Graph Refinement using GNNs



