

Extraction of airway trees from CT data Using Multiple Hypothesis Tracking and Statistical Ranking of Template-matched Hypotheses

Raghavendra Selvan¹ Jens Petersen¹ Jesper. H. Pedersen² Marleen de Bruijne^{1,3}

¹Dept. of Computer Science, UCPH, DK

³Departments of Medical Informatics and Radiology Erasmus MC, The Netherlands

²Department of Cardio-Thoracic Surgery RT, UHC, DK

Objective

Automatic extraction of airway trees to derive biomarkers for COPD

Objective

Automatic extraction of airway trees to derive biomarkers for COPD

- Chronic Obstructive Pulmonary Disease (COPD):
 - Leading factor of morbidity & mortality
 - Destruction of lung tissue Emphysema
 - Change of airway morphology
- Segmented airways to study morphology
- Dearth of useful biomarkers

Overview

- Introduction
- Method
 - Multiple Hypothesis Tracking
 - Template Matching
 - Application to Airway Trees
 - Statistical Ranking
 - Handling Branching
- Data and Experiments
- Conclusions and Future Work

Introduction

- State-of-the-art: Primarily, region-growing based methods
- EXACT Study^a compares 15 methods; No clear winner
- Most methods trade-off between Sensitivity & Specificity

^aLo, P., et.al: Extraction of airways from CT (EXACT'09). IEEE Transactions on Medical Imaging, (2012)

Introduction

Contribution

Use of Multiple Hypothesis Tracking and Statistically Ranked Templates to automatically segment complete airway trees

- State-of-the-art: Primarily, region-growing based methods
- EXACT Study^a compares 15 methods; No clear winner
- Most methods trade-off between Sensitivity & Specificity

^aLo, P., et.al : Extraction of airways from CT (EXACT'09). IEEE Transactions on Medical Imaging, (2012)

Single vs Multiple Hypothesis Tracking Methods

Single vs Multiple Hypothesis Tracking Methods

- Local hypotheses: *l_i*
- Global hypotheses : $(I_1, I_2, \dots I_n)$

$$\mathsf{globalScore} = \sum_{\mathsf{loc.hyp.}} \frac{\mathsf{loc.Score}}{\mathsf{searchDepth}}$$

Single vs Multiple Hypothesis Tracking Methods

- Local hypotheses: li
- Global hypotheses : $(I_1, I_2, \dots I_n)$

$$\mathsf{globalScore} = \sum_{\mathsf{loc.hyp.}} \frac{\mathsf{loc.Score}}{\mathsf{searchDepth}}$$

With MHT

- Robust decisions, as solutions are more global
- Search Depth controls globalness/speed tradeoff

Tubular Template Matching

- Airways as a sequence of tubular segments
- Segments described using templates
- Templates comprise of orientation, location & radius: $(\mathbf{v}, \mathbf{x}, r)$
- Fitness measures by matching templates with image data

Tracking Individual Branches

Tracking Individual Branches

- Generate regularly spaced predictions
- Update predictions using image data
- Build MHT tree from updated predictions

Tracking Individual Branches

- Generate regularly spaced predictions
- Update predictions using image data
- Build MHT tree from updated predictions

MHT in Medical Image Segmentation

- Earlier work by Friman et.al, 2009 ¹
- Successfully applied for tracking vessels
- Requires extensive user intervention
- Not immediately applicable for extracting airway trees
- Several tunable parameters
- Critical parameters are scale-dependent

¹Multiple hypothesis template tracking of small 3D vessel structures, Ola Friman et al, 2009

Modifications to the Original MHT Method

Application to Airway Trees

- Bright tubular structures in dark background
- Obtain probability images using KNN-based voxel classifier

Application to Airway Trees

- Bright tubular structures in dark background
- Obtain probability images using KNN-based voxel classifier

Fitness Measure

$$templateScore = \frac{contrast - 0}{std(contrast)}$$

Fitness Measure

$$templateScore = \frac{contrast - 0}{std(contrast)}$$

Fitness Measure

templateScore =
$$\frac{\text{contrast} - 0}{\text{std(contrast)}}$$

Org. MHT (0.7, 2, **9**, 4, 0.5) (0.1, 2, **5**, 3, 0.3) (0.2, 1, **2**, 0.4, 0)

Fitness Measure

templateScore =
$$\frac{\text{contrast} - 0}{\text{std(contrast)}}$$

- Larger structures yield large scores
- Hypothesis Thresholds tuned at one scale are not applicable at another

Org. MHT
(0.7, 2, 9 , 4, 0.5)
(0.1, 2, 5 , 3, 0.3)
(0.2. 1. 2 . 0.4. 0)

Statistical Ranking of Hypotheses

Statistical Ranking of Hypotheses

Mod. MHT (0.1, 0.2, **1**, 0.4, 0.3) (0.2, 0.3, **1**, 0.4, 0.2) (0.1, 0.4, **1**, 0.3, 0.1)

Statistical Ranking of Hypotheses

- Local hypotheses are ranked
- Relative significance between hypotheses is captured
- Global hypotheses comprise of statistically significant local hypotheses
- Removes scale-dependence of global threshold
- One parameter fewer

Mod. MHT	
(0.1, 0.2, 1, 0.4, 0.3)
(0.2, 0.3, 1, 0.4, 0.2)
(0.1, 0.4, 1, 0.3, 0.1)

Handling Branching

- Perform spectral clustering of hypotheses at each step
- New branches are spawned if two clusters are observed
- Resume tracking from each branch separately
- Each new branch inherits MHT tree history of parent node
- Handles only bifurcations

Data and Experiments

Data

- CT data from Danish Lung Cancer Screening Trials (DLCST)
- ullet Independent training and test sets; 16+16 images
- Probability images obtained using a k-NN based voxel classifier ³
- Reference data: Union of results from two previous methods verified by expert user

²Pedersen, J. H., et.al: The Danish randomized lung cancer CT screening trialoverall design and results of the prevalence round. Journal of Thoracic Oncology, (2009)

³Lo, P., et.al: Vessel-guided airway tree segmentation: A voxel classification approach. Medical image analysis,(2010)

Experiments

- Error Measure: Distance between reference & segmented centerlines
- Parameters are tuned on training set
- Trained parameters are tested on independent test set
- Compared with: Original MHT method, Region Growing on Intensity and Region Growing on Probability

Performance Comparison

Some Results

Conclusions

- Interactive method for tracking vessels has been modified for extraction of airway trees
- Ranking eliminates scale-dependence of crucial parameters
- Modified method is applicable to wider range of problems
- Promising results, with scope for improvement

Future Work

- Compare the presented method in the EXACT platform
- Derive useful biomarkers from the obtained results
- Demonstrate applicability to different problems
- Possibility of handling bifurcations

Thank you.

Comments & Questions

