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Preface

Climate change is at our door step. It is causing heat waves, flash floods, droughts,
and other erratic weather patterns. Addressing the challenges posed by climate
change will be the defining project of our times. To do this, we should employ all the
tools at our disposal. And one of the most powerful tools currently is artificial intelli-
gence (AI), which has revolutionized tasks in many application domains. As such, AI
can be indispensable in our efforts to combat climate change.

The recent class of AI methods, however, is growing to be extremely resource-
intensive. Developing and using them requires powerful datacenters, which consume
vast amounts of energy with correspondingly high carbon emissions. In addition, the
datacenters used for Al require large volumes of fresh water in their cooling systems,
rely on extractive mining to manufacture the electronics, and incur additional carbon
emissions along their lifecycle. These factors, and other broader environmental
impacts, pose a dilemma about using Al for sustainability.

The main argument in this book is that the material basis for any technology should
not be discounted even in the light of their promised benefits. This is also true for Al
Even though Al has promised—and delivered on some—solutions to the sustainabil-
ity challenges, the underlying resource cost of Al should not be ignored. If we don't
pay close attention to these massive costs, the supposed benefits offered might be
eclipsed by the negative impacts of Al the trade-off between the cost and benefits
should always be considered.

This book is an attempt to lay out these arguments so that we can make meaningful
trade-offs that advance the sustainability of Al, while using it to improve the sustain-
ability of our planet. To do this, the book presents practical tools and conceptual
frameworks that will help us assess and grapple with the complex interplay between
sustainability and AL
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Who Should Read This Book?

The book is primarily aimed at machine learning (ML) practitioners, which is by now
a broad definition because almost all of us are using Al in one way or another.

The majority of the book focuses on stakeholders who are responsible for developing,
deploying, and assessing the impact of Al This includes engineers who develop novel
ML models, managers who commission new Al applications, and policymakers who
want to obtain a better insight into the technicalities and thus assess the trade-offs
when developing and using AI models. Anyone who is broadly interested in the top-
ics of sustainability and AI but not in algorithmic development can also get a lot out
of this book by skipping some of the technical sections.

Sustainability and AI are the two most important concepts that will shape our future,
and this book is positioned at the intersection of these ideas. I hope that ML practi-
tioners will get a lot out of this book, while a general audience will still find it useful
to draw upon statistics and discussion points that can influence their digital culture.

What This Book Is and Is Not

This is neither a popular science book nor a graduate-level academic textbook. This
book tries to balance the needs of AI stakeholders by providing key arguments, for-
malisms, tools, and conceptual frameworks, so that we can foster informed discus-
sions about the sustainability of AL

Using This Book

The main questions about the sustainability of Al are framed in Chapters 1 and 3,
and revisited in Chapter 10. Anyone who is broadly interested in AI can read these
chapters and get a peek into the intricacies of the questions being addressed in the
book.

The book does assume some background knowledge about the inner workings of ML
models; however, readers who do not have this background can bridge some of the
essential concepts using Chapter 2. This chapter is not intended to be a primer on ML
for AI practitioners, but I do hope they will gain new intuitions about the technology
behind recent AI models that are behind generative Al

The remaining six chapters consist of a more technical look into the algorithmic
workings of modern ML models. Each chapter focuses on a step in the AI model life-
cycle using the gaze of resource consumption. In doing so, these chapters identify
resource bottlenecks and suggest interventions that can improve the resource effi-
ciency, and hence advance the sustainability, of Al
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Specifically, Chapter 4 addresses the question of data used in AI, Chapter 5 explores
the vast space of model selection, Chapter 6 identifies improvements during training
of AT models, and Chapter 7 provides suggestions for improving the resource effi-
ciency at deployment. These four chapters are closely tied to the algorithmic choices
that ML practitioners can make to exercise high-level control. Chapter 8 addresses
the question of hardware efficiency, and Chapter 9 takes a system-level view of AL

All the technical chapters have use cases that consider a real-world application of Al
for sustainability. These use cases are presented several times within a chapter after
introducing technical tools to show how the concepts can be put into practice.

The questions pertaining to the limitations of resource efficiency, limitations of
focusing only on environmental sustainability, and how the path to achieving broader
sustainability of AI are not addressed in any single chapter but form the general
themes of the book.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | ix
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This element indicates a warning or caution.

\

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/raghavian/sustainable_ai. The GitHub repository also includes a
bibliography with references and further reading listed by chapter.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Sustainable Al
by Raghavendra Selvan (O’Reilly). Copyright 2026 Raghavendra Selvan,
978-1-098-15551-3”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.
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How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

141 Stony Circle, Suite 195

Santa Rosa, CA 95401

800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata and any additional informa-
tion. You can access this page at https://oreil.ly/SustainableAl

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.
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CHAPTER 1
Sustainability and Artificial Intelligence

There is clear consensus among scientists about the climate trajectory of our planet—
it is warming at an alarming rate. The Intergovernmental Panel on Climate Change
(IPCC) in their most recent report declared, “Human activities, principally through
emissions of greenhouse gases, have unequivocally caused global warming, with
global surface temperature reaching 1.1°C above 1850-1900 in 2011-2020.
Figure 1-1 illustrates these trends of a warming planet and rising sea levels. The clear
rise in global temperatures and sea levels coincides with the Industrial Revolution
around the 19th century and has been accelerating in the last couple of decades.
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Figure 1-1. Historical trend of global temperature anomaly and sea levels. (Source: Two
Degrees Institute.)

1 IPCC, Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change (Geneva, Switzerland, IPCC, 2023).
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The effects of planetary warming and climate change are increasingly unpredictable:
erratic weather and intensifying natural disasters are becoming all too common, dis-
proportionately harming vulnerable populations. While international agreements like
the Paris Climate Accord have set emission targets, most fall short in either ambition
or enforcement.? The result is a growing gap between what is needed and what is
being done.

The Difference Between 1.5°Cand 2°C Global Warming

Keeping global warming under 1.5°C, emphasized in the 2015 Paris
Agreement, is considered the safer upper limit to avoid the worst
impacts of climate change. At 2°C of warming, the risks grow sub-
stantially due to the nonlinear nature of climate impacts. The dif-
ference between 1.5°C and 2°C could be the difference between
resilience and devastation. The planet is currently on track to
exceed 1.5°C warming in the near term (by 2030).

Strategies to cope with climate change are currently categorized into two streams of
efforts: climate change mitigation and climate change adaptation. Climate change mit-
igation refers to efforts of reducing or preventing greenhouse gas (GHG) emissions,
aiming to limit the pace of global warming. Climate change adaptation involves
adjusting systems, practices, and infrastructure to minimize the harm caused by the
impacts of a changing climate. These are no longer future challenges; these are the
defining crises of our time.

Faced with these daunting challenges, we need to draw on every tool at our disposal
to advance these efforts. The scale and urgency of climate change demand a compre-
hensive approach, which includes policy, collective action, systems change, and, criti-
cally, technology. But for technology to play a meaningful role, it must be deeply
rooted in sustainability.

We will adhere to the United Nations (UN) definition of sustainability: “meeting the
needs of the present without compromising the ability of future generations to meet

their own needs.”

Returning to the question of using technology to combat climate change, of all the
recent advances in technology, few have defined the current zeitgeist as much as arti-
ficial intelligence (AI). The rapid proliferation of Al tools across domains including
science, industry, and governance has opened new possibilities for addressing

2 The Paris Agreement was signed and adopted by 195 parties at the UN Climate Change Conference
(COP2021) in December 2015.

3 World Commission on Environment and Development, Our Common Future (Oxford University Press,
1987).
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large-scale, complex problems, and climate change is no exception. Al can be useful
to tackle the climate crisis in several ways. However, as with other technologies used
to tackle climate change, Al should also be rooted in sustainability.

Making AI more sustainable is important for several reasons. The most pressing one
is the large-scale resources needed to develop and use some of the recent classes of Al
methods. While these large-scale AI methods are promising, their reliance on vast
amounts of data, hyper-scale compute resources, massive energy consumption, and
the corresponding carbon emissions are concerning as they negatively affect the envi-
ronmental sustainability of AL Resources at these scales are fiscally expensive, which
also deepen the digital divide in the AI era and hence hamper the economic and
social sustainability of Al

Al/ML/DL

The terms AI, machine learning (ML), and deep learning (DL) are often used inter-
changeably, though their boundaries are neither fixed nor universally agreed upon.
One useful classification frames ML as a broad class of methods designed to learn
from data, encompassing everything from basic linear regression to large-scale con-
versational agents. DL then refers to a subset of ML methods that rely on deep neural
networks as the underlying model class, ranging from simple feedforward networks
to convolutional architectures and transformers. Al in turn, subsumes both ML and
DL but extends beyond them to include the broader pursuit of machine-based intelli-
gence. This includes not only technical approaches but also the social, philosophical,
and cultural dimensions of what we consider “intelligent” behavior, which is often
shaped as much by industrial ambition and public imagination as by scientific con-
sensus. Figure 1-2 visualizes the relationship between these terms as a Venn diagram.

Artificial intelligence

Machine learning

Deep learning

Figure 1-2. One possible classification of AI/ML/DL.
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This book attempts to shine a light on the questions surrounding the sustainability of
Al It uses a lens of resource consumption, primarily energy and carbon. As Al prac-
titioners, we can have the greatest impact by influencing the design and development
of Al models to keep their resource consumption in check. While this alone will not
make Al sustainable, it can be a step in the right direction.

In the remainder of this chapter, I will formalize some of the commonly used notions
(including what it means to be sustainable and what we mean by AI), point out the
pros and cons of pursuing resource efficiency, and outline the rest of the book. Sus-
tainability and AI are two of the most important ideas defining our age. So, by defini-
tion, the ambitions of a book entitled Sustainable AI are grand. I hope this chapter
will offer a glimpse into the promise of the rest of the book.

Scope of Sustainability

The most visible discussions around sustainability are focused on the environment.
However, this is only part of the story as achieving true sustainability should also
emphasize the economic and social aspects. We will use a real-world scenario to
understand sustainability in all its complexity next.

The Samsg Sustainability Story

Step off the ferry to the Danish island, Samse, and you will see a postcard-perfect
view of Danish farms that, like any rural community, burned imported oil 25 years
ago (see Figure 1-3). Then the islanders won a 1997 national contest to become Den-
mark’s “Renewable Energy Island”* Within a decade they had installed cooperatively
owned wind turbines and biomass district-heating plants so that today Samse exports
electricity to the mainland, and each resident averages about 3.7 tonnes (t) of carbon
dioxide (CO,) equivalent (e) of GHGs per year, which is roughly half of the Danish
national average at about 7tCO,e.” For more about tCO,e, see “GHG Emissions and
Carbon Footprint” on page 68.

Denmark’s energy grid is one of cleanest in the world today, primarily due to the
strong investment in wind energy.

Seen through the environmental lens, the transformation is striking. The grid runs on
100% renewables, mainly wind. It has shown a carbon drop of roughly 140% from its
1997 baseline, meaning by exporting surplus renewable energy to mainland Den-
mark, Samse offsets more than its total emissions.

4 Jan Jantzen et al., “Sociotechnical Transition to Smart Energy: The Case of Samso 1997-2030,” Energy 162
(August 3, 2018): 20-34.

UNFCC, “Samso: An Island Community Pointing to the Future,” 2023.

w
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improvement. Even a perfectly run server powered by renewables still sits on a global
supply chain of emissions and ecological damage.*

The main point to bear in mind for the remainder of the book is that efficiency is a
necessary condition for sustainable AL but it is not sufficient. It lowers immediate emis-
sions and proves that smarter practice is possible, but without complementary meas-
ures that look beyond resource consumption, efficiency can take us only so far in the
journey toward sustainable Al

TL;DR

So far, I have presented the context for how sustainability and Al intersect to shape
our rapidly changing world. This book will explore a wide array of techniques that
will help us identify resource bottlenecks in AI systems, improve upon these ineffi-
ciencies, and work toward green and ultimately sustainable AL To do that we have to
look closely at each of the complex steps involved in the algorithmic lifecycle of a DL
model, as shown in Figure 1-10. I devote a chapter to each of these steps.

£-2-5-1Es

Dataset curation Model selection Model training Model deployment
(Chapter4) (Chapter5) (Chapter6) (Chapter 7)

Figure 1-10. A typical AI model lifecycle.

You may already have some questions; I will try to preempt them with short answers
and, in doing so, present the book’ outline:

Do I have to be a machine learning expert to read the rest of the book?
No, but I am assuming you are an ML/AI practitioner with working knowledge and
keen interest in these methods.

Chapter 2 aims to explore some key ML concepts to look at the foundations of
Al We will use the perspective of representation learning, a view of Al where
algorithms learn useful features from data. This will be the basis for Chapter 2,
which, while intended to be an introduction to key ML concepts, is far from
comprehensive. But we will look at the relevant topics with an eye on resource

33 Dustin Wright et al., “Efficiency Is Not Enough: A Critical Perspective of Environmentally Sustainable AL
Communications of the ACM 68. no. 7 (2025): 62-9.
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consumption. I have not shied away from using mathematical notations, as they
make the presentation of some of the concepts later easier. However, I have tried
hard to not lose any readers who might not want to follow the notations with
equivalent descriptions everywhere.

How do we know if the tools in this book are actually making Al more sustainable?

Sustainability is difficult to measure. But, we can use proxies that can measure
resource efficiency.

Chapter 3 will introduce commonly used measures that give insight into the
resource consumption of Al models. We will understand the pros and cons of
measuring runtime, energy consumption, and carbon emissions. We will try
some easy-to-use tools that can help us better quantify the resource consumption
of Al in standardized ways. This chapter will also introduce the key concept of AT
waste, which we will use to identify wasteful resource usage in different steps of
the AI lifecycle. For instance, Al waste can manifest as training a massive model
from scratch when using a smaller, pretrained model would have sufficed.

Do we always need big data to build AI models?

Some would say so. However, not all data is equally useful, and knowing this can
reduce data-related costs significantly.

Availability of cheap, large-scale data has resulted in the use of more data than
what might be needed to solve any given task. This abundance mindset has resul-
ted in a lot of data-related redundancies. The process of dataset curation consists
of collecting, cleaning, labeling, and preprocessing data to prepare it for training.
Chapter 4 will elaborate on efficient dataset curation practices, show techniques
to compress data points, and explain how to distill information in a given dataset
into a few data points.

How do we decide if one model is more efficient than another?

Simpler models tend to be more efficient, but they may not perform well compared
to a more complex model. Choosing models that offer the right trade-off might be
the way to go.

Choosing the right class of model or its configuration is an elaborate procedure.
This is dependent on the problem domain, the amount of data that is available,
and the resources at our disposal. In Chapter 5 we will formalize the exploration
of ML models and configurations, and then use existing techniques to efficiently
explore this space so that we can identify the right model and configuration that
offers the best trade-off between performance and resource consumption. The
notion of Pareto optimality will be a key concept that will drive the discourse in
this chapter.
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Some recent models are trained for months. Is this always the case?
Yes, for the most recent class of frontier AI models such as the ones behind genera-
tive Al (GenAl). However, a broad array of very useful AI models can be trained
way faster.

Model training can be one of the most resource-intensive steps. This is by design
as the model parameters are updated iteratively until the model captures the
desired input-output relations in the training data. Chapter 6 will cover a broad
set of methods that can accelerate model training. This can be done either by
“mimicking” knowledge from already trained models or by reducing the number
of computations performed by modulating the number of bits being used. Recent
AT models require more specialized ways to accelerate their training, which will
also be discussed.

Using a model at inference does not seem expensive, compared to training it. How is
model use contributing to Al being resource-intensive?
Training is done once, but models can be used millions of times. Depending on how
successful a model is, its usage cost can outweigh development costs.

Al models are developed with the hope they will be used, and used widely. Once
this happens, even if the energy consumption and carbon emission for a single
use is small, this can become significant at scale. Chapter 7 will aim to model
when the training and inference costs cross over for models. The chapter will also
build upon the efficient training techniques in Chapter 6 and specialize them for
deployment or inference scenarios. We'll also answer questions about how to
adapt models across programming languages and hardware platforms.

As an ML/AI practitioner, I can tweak algorithms. How can this influence the
resource efficiency of the AI hardware?
Underutilization of hardware is a chronic issue in AI. Many algorithmic tweaks can
improve the resource efficiency of hardware.

Most recent Al models require specialized hardware for faster development.
These come at huge costs (monetary and environmental) but are underutilized
due to several factors. Chapter 8 will explore some easy-to-implement strategies
to better utilize hardware, ranging from single computers to datacenters. That
being said, there are challenges that cannot be fixed by algorithms alone. For
example, e-waste is not something that can be optimized away. We will discuss
these hardware-related points in depth in Chapter 8.
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Building AI models involves many tedious steps. Is there a cascading effect of
resource inefficiency that could percolate between steps?

Yes, certainly. AI models are developed in a long sequence of steps; poor choices in
one step can blow up the resource consumption down the line.

Figures 1-6 and 1-10 show the elaborate lifecycle of recent AI models. Each of
these steps requires considerable resources, and one of the main arguments of
this book is that there are wasteful resource allocations everywhere. Chapter 9
points out that choices made at one step can have a huge impact down the line.
Using concepts derived from systems engineering and ML operations, this chap-
ter introduces frameworks that can be used to holistically manage and improve
the resource consumption of AI models.

Let’s say we do all this. Can we achieve sustainable AI?

This question lies at the heart of the matter, and the answer is necessarily
complex.
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CHAPTER 10
Toward Sustainable Al

For much of our history, agriculture was constrained by the natural nitrogen cycle.
Usable nitrogen was scarce, and farmers relied on manure, compost, and legumes to
restore soil fertility.! These limits kept the yields modest, and food production was
tightly coupled to ecological rhythms.

With the invention of the Haber-Bosch process in the early 20th century, however,
scientists unlocked the ability to produce synthetic fertilizer at industrial scale by syn-
thesizing ammonia from atmospheric nitrogen. This had a transformative effect on
food production and agriculture as crop yields soared, famine declined, and the
Green Revolution brought this power to fields across the globe.

But the efficiency gains that synthetic nitrogen unlocked came with unintended con-
sequences. Figure 10-1 shows the historical trend of nitrous oxide (N,O) in the
atmosphere. Like other GHGs, N,O levels rose sharply with industrialization begin-
ning in the 19th century. What sets N,O apart, however, is that the vast majority of its
increase is from agriculture—primarily as a byproduct of the Haber-Bosch process,
which underpins modern intensive industrial farming.?

1 C. C. Delwiche, “The Nitrogen Cycle,” Scientific American, September 1, 1970.

2 Prabhu L. Pingali, “Green Revolution: Impacts, Limits, and the Path Ahead,” Proceedings of the National Acad-
emy of Sciences 109, no. 31 (July 31, 2012): 12302-8.

3 Hannah Ritchie et al., “Breakdown of Carbon Dioxide, Methane and Nitrous Oxide Emissions by Sector,” Our
World in Data, June 10, 2020.
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Figure 10-1. Historical trend of nitrous oxide levels measured in parts per billion (PBB).
(Source: Two Degrees Institute.)

Rather than reducing environmental pressures, the rapid scaling of agriculture intro-
duced new forms of ecological strain.* Now, the Green Revolution is seen as a tipping
point that has made industrialized agriculture one of the largest contributors to envi-
ronmental degradation.

This an example of what economists call rebound effect: as a technology becomes
more efficient, it often also becomes cheaper or more convenient to use, which can
encourage people to use it more, offsetting or even reversing the intended savings.
Rebound effect is also closely related to the Jevons paradox discussed in “Energy Effi-
ciency, Sustainable Al, and the Jevons Paradox” on page 67.

Rebound Effects and Al

The techniques presented in this book have focused on improving the resource effi-
ciency of AI systems. We have identified various forms of Al waste (“AI Waste” on
page 53), introduced the concept of environmental debt (“Environmental Debt of AT”
on page 230), and outlined numerous opportunities for making Al more efficient. If
resource-saving techniques make Al extremely efficient, we must still confront the
rebound effects.” This chapter will explore how to manage this paradox toward the
goal of aligning efficiency with sustainability.

As I have hinted throughout, reducing carbon emissions through resource efficiency
alone has only a limited effect on the sustainability of AI. As noted in Chapter 1 (“A

4 Harry M. Cleaver, “The Contradictions of the Green Revolution,” The American Economic Review 62, no. 1/2
(1972): 177-86.

5 Alexandra Sasha Luccioni et al., “From Efficiency Gains to Rebound Effects: The Problem of Jevons’ Paradox
in AT’s Polarized Environmental Debate,” in Proceedings of the 2025 ACM Conference on Fairness, Accountabil-
ity, and Transparency (FAccT °25), New York, NY, 76-88.

248 | Chapter 10: Toward Sustainable Al


http://jstor.org/stable/1821541
http://jstor.org/stable/1821541
https://doi.org/10.1145/3715275.3732007
https://doi.org/10.1145/3715275.3732007
https://doi.org/10.1145/3715275.3732007
https://2degreesinstitute.org

Sample content from the book "Sustainable AI" by Raghavendra Selvan.
For more, check out https://raghavian.github.io/sustainable-ai/

Green Path to Sustainable AI” on page 16), we deliberately address the sustainability
of AT using the narrow lens of resource efficiency. Confronting sustainability in all its
dimensions—environmental, economic, and social—is a huge undertaking requiring
efforts that go well beyond algorithmic improvements or efficiency hacks. I have used
resource efficiency as a pragmatic entry point into the environmental dimension of
AT’s sustainability and to lay out the complexities that need to be addressed.

In this chapter, I will clarify why the focus on efficiency is a necessary but not a suffi-
cient condition for achieving sustainable AI. Based on this critique, I will present sug-
gestions based on frameworks that operate at higher abstractions (beyond
algorithmic efficiency) to advance toward sustainable Al

Efficiency Is Not Enough

The pursuit of resource efficiency is an important endeavor as it offers meaningful
interventions during the development and deployment of AI systems at the level of
an individual or small teams of developers.® However, solely obsessing over efficiency
improvements by casting them as metrics to be optimized can have detrimental
effects within the broader scope of sustainable AI. This is captured by the adage
“When a measure becomes a target, it ceases to be a good measure,” which is com-
monly known as Goodharts law.” We need to address the broader environmental
effects, economic viability, and the social impact of AJ; to fully grapple with the sus-
tainability of Al as efficiency alone is not enough.?

Broader Environmental Effects

In Chapter 3, we used the framework of resource pyramids (Figure 3-1) to illustrate
the layered nature of resource consumption in Al models. Spanning from model
complexity, we built the different levels of resource consumption leading up to the
carbon footprint. As noted in the previous chapters, this carbon footprint corre-
sponds to only the operational emissions due to the energy consumption. While we
briefly touched upon the overhead due to networking costs and other IT equipment
using the notion of PUE (“Estimating energy consumption” on page 64) and embod-
ied emissions to account for the carbon emissions due to hardware manufacturing

6 Brian R. Bartoldson et al., “Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities,” Jour-
nal of Machine Learning Research 24, no. 122 (2023): 1-7.

7 Adrian C. Newton, “Implications of Goodhart’s Law for Monitoring Global Biodiversity Loss,” Conservation
Letters 4, no. 4 (2011): 264-68.

8 The mantra “efficiency is not enough” in the context of Al is based on a paper of the same title by Dustin
Wright et al. (2025). I am the corresponding author on this paper, and several of the arguments from this
work are echoed in this section.
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(“Embodied Emissions” on page 199), these do not fully capture the total environ-
mental impact of AL

To fully assess the environmental sustainability of AI, we need to look beyond opera-
tional and even embodied carbon emissions, which are mainly caused due to the
energy consumed across the Al model lifecycle shown in Figure 1-6. Carbon foot-
print is only one factor that connects the AI model lifecycle to its environmental
impact. There are multitudes of other factors that should be taken into account when
discussing the true environmental impact of AL

It is notoriously difficult to comprehensively measure the full environmental foot-
print of Al systems. The challenges of tracing the broader ecological consequences of
AT arise not just from data scarcity but also from the sheer complexity of global sup-
ply chains and infrastructural systems.” For this reason, much of the existing
research—including the focus of this book—has concentrated on the more readily
quantifiable aspect: operational carbon emissions, or the emissions generated during
the training and deployment of Al models. This approach only scratches the surface.

Beyond operational emissions, there are a number of other components that contrib-
ute to AT’'s environmental impact, and these are often overlooked precisely because
they are harder to assess with precision. Consider, for instance, the embodied emis-
sions associated with the manufacturing of the hardware required to run large-scale
AT systems. This includes not just the energy consumed during the production of
servers, GPUs, and networking equipment, but also the emissions embedded in the
complex refinement processes for silicon, which are both energy-intensive and chem-
ically hazardous."

Water usage is another major factor, as large volumes are required to cool high-
performance datacenters. This challenge is not easy to address directly through algo-
rithmic improvements. While often treated as a local utility issue, the environmental
costs of this water usage compound over time and are especially problematic in
regions already facing water scarcity."

Construction of datacenters themselves introduces yet another layer of environmen-
tal impact. The construction industry, widely recognized as one of the most carbon-
intensive sectors globally, adds significantly to the AI footprint through the emissions
generated in producing concrete, steel, and other building materials, as well as
through land use changes.

9 Alexandra Sasha Luccioni et al., “Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model,” Journal of Machine Learning Research 24, no. 253 (2023): 1-15.

10 Carole-Jean Wu et al., “Beyond Efficiency: Scaling Al Sustainably,” arXiv.org, June 22, 2024.
11 Pengfei Li et al., “Making AI Less ‘“Thirsty;” Communications of the ACM 68, no. 7 (2025): 54-61.
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Al as infrastructure, 6
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K-means clustering, 91
matrix multiplication, 61
naive, 61
NAS algorithm, 175
novel NAS algorithms, 134, 140
pruning algorithms, 181
random sampling and, 88
stochastic gradient descent (SGD), 46, 53,
115
Strassen, 61
time complexity of, 61, 74
amortization, 172
AMP (automatic mixed precision), 164
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decentralized system for, 174

distilling into efficient architectures for, 180

native edge hardware support for, 192
autoencoders, 25, 26-28, 100
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backpropagation, 33, 165
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EC-NAS Benchmark dataset, 135, 141
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of data processing, 81
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coping with effects of, 2
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cloud computing, 197
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cluster-level optimization, 206-213
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resource consumption of, 54
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development costs, 172, 175
DevOps (Development Operations), 233
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distributed computing, 203, 205
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feature vectors, 32
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144
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Green Revolution, 247
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hardware scaling laws of AL, 202
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server refresh cycles, 201
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hardware-optimized software, 220-222
HCI GenAI CO,ST Calculator,, 240
herding, 95
high-level languages, 190
HPO (see hyperparameter optimization)
Hugging Face, 148
Hugging Face model cards tool, 239
human labor, 7
hyperparameter optimization (HPO)
Bayesian optimization, 124-128
goal of, 119
grid search, 119-120
versus neural architecture search (NAS),
137
random search, 121-124
hyperparameters
definition of term, 115
optimizing, 117-129
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model parameters, 115
hypothesis space, 112

in-context learning, 151
inductive bias, 32, 78
inference (see also lean inference)
definition of term, 171
lifetime cost of AI models, 172-174
training costs versus inference costs, 173
infrastructure
Al as infrastructure, 6
cooling infrastructure, 200, 206
required for storage, 205
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instance selection
definition of term, 88
K-center selection, 92
K-means clustering, 91
methods for coreset selection, 97
random sampling, 88, 93
stratified sampling, 89
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J

Jevons paradox, 67

K

K-center selection, 92
K-means clustering, 91
knowledge distillation, 177
Koomey's law, 203

L

Landauer's principle, 203

large language models (LLMs), 29, 151, 202

latency, 62

layer-wise sharding, 210

LCA (lifecycle assessment), 225

lean inference
achieving, 175
deploying models, 186-193
FAQs (frequently asked questions), 193-195
knowledge distillation, 177
post-training quantization (PTQ), 182-185
pruning of trained models, 180
resource-efficient architectures, 175-177

learned representation spaces, 24

learning rate, 44

LeNet-5 architecture, 34

lifecycle assessment (LCA), 225

linear models, 41

Lithium Triangle, 14

Llama-3, 231

LLMs (see large language models)

logic processing, 205

long short-term memory (LSTM), 36

LoRA (low-rank adaptation), 158

Lottery Ticket Hypothesis (LTH), 136, 180

low-dimensional spaces, 102

low-level languages, 190

low-precision training, 162-164

low-rand adaptation (LoRA), 158-160

LSTM (long short-term memory), 36

LTH (see Lottery Ticket Hypothesis)

M

MAC (multiply-accumulate) operation, 58-60
machine learning (ML)

data modalities, 31

definition of term, 3

formalizing, 41

model training, 43-46
nonlinear models and deep learning, 41
technical debt of, 228
machine learning operations (MLOps), 233-235
magnitude pruning, 180
material resources, 7, 11, 21 (see also resource
consumption)
mathematical notations, 49
matrix multiplications, 61
matrix operations, 60
MC3-space concept, 114
MIG (multi-instance GPU), 215
mini-batch gradient descent, 46
mitigation
definition of term, 2
using Al to address climate change, 9-11, 17
mixture-of-experts (MoE) model, 137
ML (see machine learning)
ML CO, Impact Calculator, 240
MLOps (machine learning operations), 233-235
MLPs (see multilayer perceptrons)
model cards, 239-241
model class, 118
model complement, 117
model complexity
concept of, 55
measures of, 54, 57-61
reducing, 153
model parallelism, 209
model selection
automating, 116, 138
challenges of, 112
definition of term, 111
FAQs (frequently asked questions), 138-142
foundational models and, 136, 158-160, 193
hyperparameter optimization (HPO),
119-129
mixture-of-experts (MoE) model, 137
model selection hierarchy, 114
neural architecture search (NAS), 129-135
as optimization, 116-118
parameters, 115
model sharding, 210
MOoE (mixture-of-experts) model, 137
Moore's law, 203
MPS (multiprocess service), 214
multi-instance GPU (MIG), 215
multilayer perceptrons (MLPs), 32, 35-37
multimodal generative models, 30
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multiobjective optimization, 175

multiple virtual GPUs (vGPUs), 216
multiply-accumulate (MAC) operation, 58-60
multiprocess service (MPS), 214

multistream execution, 214

N
naive algorithm, 61
NAS benchmarks, 134
networking fabric, 205
neural architecture search (NAS)
carbon cost of, 130
challenges of, 129
definition of term, 118
efficiency and, 133
versus hyperparameter optimization (HPO),
137
hypothesis space spanned by, 129
for novel molecule discovery, 135
as optimization, 131
resource-efficient architectures, 175-177
search spaces, 130
using evolutionary algorithms, 132
using random search, 132
neural architectures
convolutional neural networks (CNNs), 34
graph neural networks (GNNG), 37
long short-term memory (LSTM), 36
multilayer perceptrons (MLPs), 32, 35-37
neural networks as feature extractors, 107
recurrent neural networks (RNNs), 35
Transformer architecture, 38-40
neural processing units (NPUs), 222
nitrous oxide (N,O), 247, 261
nonlinear models, 41
notations for machine learning, 49
novel molecule discovery
challenges of using Al for, 113
hyperparameter optimization (HPO), 128
model class for, 118
neural architecture search (NAS) and, 135
NPUs (neural processing units), 222
NVCC (NVIDIA CUDA Compiler), 220

0

ONNX Model Zoo, 189

Open Neural Network Exchange (ONNX),
187-189

operational emissions, 74

operationalization
FAQs (frequently asked questions), 243-245
green MLOps, 235
green MLOps in practice, 238-243
MLOps (machine learning operations),

233-235

optimization
accelerator-level optimization, 213
cluster-level optimization, 206-213
custom hardware optimization, 220-223
model selection as, 116
multiobjective optimization, 175
neural architecture search (NAS) as, 131
Pareto optimization, 176
quantizing optimizer states, 164-166
search space, 116

orchestration frameworks, 242

P

parallelism, 209
parameter-wise sharding, 210
parameters

parameter matching, 106

parameter redundancy, 136

removing unnecessary, 153-155

trainable parameters, 41, 55, 58, 146, 158
Pareto optimization, 176
PCA (principal component analysis), 99
performance matching, 104
pipeline parallelism, 209, 211
post-training quantization (PTQ), 182-185
power usage effectiveness (PUE), 65
prerequisites required, viii, 17
pretrained models

alleviating domain shift in, 149

benefits of, 147

challenges of, 147

fine-tuning of, 148, 182

magnitude pruning of, 180

sharing and accessing, 148

suitability of, 148
principal component analysis (PCA), 99
processing in memory, 222
programming languages, efficiency of, 190-192
pruned datasets

coreset selection, 94

instance selection, 88-93

learning with, 88

tokenization and data efficiency, 93
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pruning

of neural networks, 153-155, 182

of trained models, 180
PTQ (post-training quantization), 182-185
PyTorch Image Models, 147

Q

quadratic complexity, 40
quantization methods
floating-point precision representations, 161
low-precision training, 162-164
post-training quantization (PTQ), 182-185
purpose of, 161
quantizing optimizer states, 164-166
real versus simulated quantization, 163
quantization-aware training (QAT), 166
quasi-continuous representation space, 29
questions and comments, xi

R

random projection, 98
random sampling, 88, 93
random search, 121-124, 132
real quantization, 163
rebound effect, 248, 252
receptive fields, 35
recurrent neural networks (RNNs), 35
recycling programs, 200
redundant computations, 53
regularization, 27-28
reinforcing loop, 262
representation learning, 17,22-26
resource consumption
cascading effect of inefficiency, 20
estimating for training DL models, 146
impacts on, 4
increase in, 252
measuring efficiency of, 18, 53
quantifying, 57-67
Resource Pyramid, 54, 57, 64, 68, 76
resource-efficient architectures, 175-177
RNNs (recurrent neural networks), 35
runtime, 62

S

Samseg, Denmark, 4
SASA (Sustainable AT Systems Assessment)
framework, 263-266

scale is all you need approach, 11
scaling laws, 202
SDGs (Sustainable Development Goals), 8
search space, 116
SGD (stochastic gradient descent), 46
sharding, 210
social sustainability, 15, 63, 259
software, hardware-optimized, 220-222
spatial locality, 34
state dictionaries, 149
stateful optimizers, 165
static quantization, 183
stochastic gradient descent (SGD), 46
storage
carbon footprint of data storage, 78
infrastructure required for, 205
Strassen algorithm, 61
stratified sampling, 89
supplemental material, x
surrogate models, 125, 135
sustainability
definition of term, 2
importance of, 3
interplay between Al and sustainability, vii
measuring, 18
scope of, 4-6
sustainable Al
ability to achieve, 20, 266, 267
broader environmental effects of Al
249-251
economic sustainability, 255-259
FAQs (frequently asked questions), 17-20
green path to, 16
holistic view of resource efficiency, 54, 228,
233
impact of, 266
implications of, 8
Jevons paradox and, 67
operationalizing, 233-238
principles guiding actions, 264-266
rebound effects and, 248
resource efficiency and, 57
Samsg sustainability story, 4
social sustainability, 259
using Al to address climate change, 9-11, 17
viewed along axes of agency and scope,
253-255
Sustainable AI Systems Assessment (SASA)
framework, 263-266
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Sustainable Development Goals (SDGs), 8
synthetic fertilizers, 247, 261
systems thinking, 260-266

in-context learning in LLMs, 151
pretrained models, 147-150
recycling already trained models, 147

T
tabular benchmarks, 134
target audience, viii, 17
technical debt, 228-229
techno-solutionism, 11
tensor processing units (TPUs), 223
tokenization
benefits of for transformers, 40
definition of term, 39, 93
in practice, 40
for language data, 94
in non-language datasets, 93
in transformer-based models, 93
TPUs (tensor processing units), 223
trainable parameters
in AI models, 41
counting number of, 58
reducing number of, 158
relationship to compute, 146
Resource Pyramid and, 55
training costs
carbon footprint, 146
energy consumption, 145
versus inference costs, 173

training efficiency (see also efficiency)

transfer learning

Transformer architecture, 38-40, 93, 136, 202

translation equivariance, 34

transparency debt, 231

tree identification example
curating datasets frugally for, 84
data parsimony for, 110
in low-dimensional spaces, 102
pretrained models and, 148
technical debt in, 229

U

UN Sustainable Development Goals (SDGs), 8

v

variational autoencoders (VAEs), 28
vector operations, 59

VGGNet, 34

vGPUs (multiple virtual GPUs), 216

]
weight matrices, 35, 155, 157-158
weight sharing, 34

Y

Y2K bug, 227
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Colophon

The animal on the cover of Sustainable Al is a barn swallow (Hirundo rustica), the
most common swallow. Barn swallows have six subspecies and can be found on every
continent around the world. They thrive in open land, such as pasture, meadow, and
savanna, and build nests in human constructions.

Barn swallows are insectivores, endearing them to their human neighbors, and are
known for hunting while in flight. Their long, pointed wings, forked tails, and slender
bodies enable them to glide for long periods. The distinctive tail streamers, backs, and
breast bands are steely blue, and the underparts are white or off-white. Above and
below their short, wide beaks, barn swallows have rusty red feathers.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.
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